Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T07:12:00.743Z Has data issue: false hasContentIssue false

Synthesis and photoluminescence properties of perovskite KMgF3:Eu nanocubes

Published online by Cambridge University Press:  21 October 2011

Ying Li
Affiliation:
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
Kai Pan
Affiliation:
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
Guofeng Wang*
Affiliation:
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
Naiying Fan
Affiliation:
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
Xiaohuan Miao
Affiliation:
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

KMgF3:Eu nanocubes with a mean edge length of ∼12 nm were synthesized by a hydrothermal method. Result of x-ray diffraction reveals that the nanocubes are perovskite phase. Under ultraviolet excitation, the broad emission bands from trace oxygen and color centers in KMgF3 matrix were observed. In comparison with a bulk sample having the same chemical compositions, no characteristic emissions of Eu2+ were observed, which can be attributed to the overlappment of the emissions of Eu2+ and color centers in KMgF3:Eu nanocubes. In addition, the emissions of Eu3+ were also detected, and the intensity ratio of 5D07F2 to 5D07F1 changed with excitation wavelength, indicating that the material has multiple luminescence centers or emitting states.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Johnson, A. and Guggenheim, H.: Infrared-pumped visible laser. Appl. Phys. Lett. 19, 44 (1971).CrossRefGoogle Scholar
2.Tanabe, S. and Tamaoka, T.: Gain characteristics of Tm-doped fluoride fiber amplifier in S-band by dual-wavelength pumping. J. Non-Cryst. Solids 326, 283 (2003).CrossRefGoogle Scholar
3.van Eijk, C.: Photoluminescence and thermoluminescence of Ce3+ and Eu2+ in Ca2Al2SiO7 matrix. J. Lumin. 60, 936 (1994).CrossRefGoogle Scholar
4.Funk, D., Carlson, J., and Eden, J.: Room-temperature fluorozirconate glass fiber laser in the violet (412 nm). Opt. Lett. 20, 1474 (1995).CrossRefGoogle ScholarPubMed
5.Wang, L., Xue, X., Shi, F., Zhao, D., Zhang, D., Zheng, K., Wang, G., He, C., Kim, R., and Qin, W.: Ultraviolet and violet upconversion fluorescence of europium (III) doped in YF3 nanocrystals. Opt. Lett. 34, 2781 (2009).CrossRefGoogle Scholar
6.Camposeo, A., Fuso, F., Arimondo, E., Toncelli, A., and Tonelli, M.: Er-LiYF4 coating of Si-based substrates by pulsed laser deposition. Surf. Coat. Technol. 180, 607 (2004).CrossRefGoogle Scholar
7.Cremona, M., Mauricio, M., Fehlberg, L., Nunes, R., Scavarda do Carmo, L., Avillez, R., and Caride, A.: Grazing incidence x-ray diffraction analysis of alkali fluorides thin films for optical coatings. Thin Solid Films 333, 157 (1998).CrossRefGoogle Scholar
8.Yi, G., Lu, H., Zhao, S., Ge, Y., Yang, W., Chen, D., and Guo, L.: Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 4, 2191 (2004).CrossRefGoogle Scholar
9.Wang, F., Xue, X., and Liu, X.: Multicolor tuning of (Ln,P)-doped YVO4 nanoparticles by single-wavelength excitation. Angew. Chem. Int. Ed. 47, 906 (2008).CrossRefGoogle ScholarPubMed
10.Chen, Z., Chen, H., Hu, H., Yu, M., Li, F., Zhang, Q., Zhou, Z., Yi, T., and Huang, C.: Versatile synthesis strategy for carboxylic acid−functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 130, 3023 (2008).CrossRefGoogle ScholarPubMed
11.Wang, L. and Li, Y.: Green upconversion nanocrystals for DNA detection. Chem. Commun. 2557 (2006).CrossRefGoogle ScholarPubMed
12.Wang, G., Peng, Q., and Li, Y.: Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 131, 14200 (2009).CrossRefGoogle Scholar
13.Wang, G., Qin, W., Xu, Y., Wang, L., Wei, G., Zhu, P., and Kim, R.: Size-dependent upconversion luminescence in YF3:Yb3+/Tm3+ nanobundles. J. Fluor. Chem. 129, 1110 (2008).CrossRefGoogle Scholar
14.Li, C., Yang, J., Yang, P., Lian, H., and Lin, J.: Hydrothermal synthesis of lanthanide fluorides LnF3 (Ln = La to Lu) nano-/microcrystals with multiform structures and morphologies. Chem. Mater. 20, 4317 (2008).CrossRefGoogle Scholar
15.Francini, R., Grassano, U., Tomini, M., Boiko, S., Tarasov, G., and Scacco, A.: Two-photon excitation spectra of divalent europium in cubic perovskite KMgF3. Phys. Rev. B. 55, 7579 (1997).CrossRefGoogle Scholar
16.Hua, R., Jia, Z., and Shi, C.: Preparation of KMgF3 and Eu-doped KMgF3 nanocrystals in water-in-oil microemulsions. Mater. Res. Bull. 42, 249 (2007).CrossRefGoogle Scholar
17.Seo, H., Moon, B., and Tsuboi, T.: Investigation of 4f7 levels of Eu2+ ions in KMgF3 crystal by two-photon excitation spectroscopy. J. Lumin. 87, 1059 (2000).CrossRefGoogle Scholar
18.Jia, Z., Yu, L., and Shi, C.: Growth and vibrational spectra of doped KMgF3 single crystal. Spectrochim. Acta Part A 59, 2943 (2003).CrossRefGoogle ScholarPubMed
19.Darabont, A., Neamţu, C., Fărcaş, S., and Borodi, G.: Growth of pure and doped KMgF3 single crystals. J. Cryst. Growth. 169, 89 (1996).CrossRefGoogle Scholar
20.Yan, R. and Li, Y.: Down/up conversion in Ln3+-doped YF3 nanocrystals. Adv. Funct. Mater. 15, 7630 (2005).CrossRefGoogle Scholar
21.De, G., Qin, W., Zhang, J., Zhang, J., Wang, Y., Cao, C., and Cui, Y.: Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+,Tm3+ microsheets. J. Lumin. 122, 128 (2007).CrossRefGoogle Scholar
22.Hou, Z., Yang, P., Li, C., Wang, L., Lian, H., Quan, Z., Lin, J.: Preparation and luminescence properties of YVO4:Ln and Y(V,P)O4:Ln (Ln = Eu3+,Sm3+,Dy3+) nanofibers and microbelts by sol−gel/electrospinning process. Chem. Mater. 20, 6686 (2008).CrossRefGoogle Scholar
23.Wang, G., Qin, W., Zhang, J., Zhang, J., Wang, Y., Cao, C., Wang, L., Wei, G., Zhu, P., and Kim, R.: Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles. J. Phys. Chem. C 112, 12161 (2008).CrossRefGoogle Scholar
24.Li, C., Quan, Z., Yang, P., Yang, J., Lian, H., and Lin, J.: Shape controllable synthesis and upconversion properties of NaYbF4/NaYbF4:Er3+ and YbF3/YbF3:Er3+ microstructures. J. Mater. Chem. 18, 1353 (2008).CrossRefGoogle Scholar
25.Yang, J., Li, C., Cheng, Z., Zhang, X., Quan, Z., Zhang, C., and Lin, J.: Size-tailored synthesis and luminescent properties of one-dimensional Gd2O3:Eu3+ nanorods and microrods. J. Phys. Chem. C 111, 18148 (2007).CrossRefGoogle Scholar
26.Li, C., Yang, J., Quan, Z., Yang, P., Kong, D., and Lin, J.: Different microstructures of β-NaYF4 fabricated by hydrothermal process: Effects of pH values and fluoride sources. Chem. Mater. 19, 4933 (2007).CrossRefGoogle Scholar
27.Wang, Y., Qin, W., Zhang, J., Cao, C., Zhang, J., Jin, Y., Zhu, P., Wei, G., Wang, G., and Wang, L.: Bright green upconversion fluorescence of Yb3+,Er3+-codoped fluoride colloidal nanocrystal and submicrocrystal solutions. Chem. Lett. 36, 1 (2007).CrossRefGoogle Scholar
28.De, G., Qin, W., Zhang, J., Zhao, D., and Zhang, J.: Bright-green upconversion emission of hexagonal LaF3:Yb3+,Er3+ nanocrystals. Chem. Lett. 34, 1 (2005).CrossRefGoogle Scholar
29.Sun, Y., Chen, Y., Tian, L., Yu, Y., Kong, X., Zhao, J., and Zhang, H.: Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals. Nanotechnology 18, 275609 (2007).CrossRefGoogle Scholar
30.Tao, F., Wang, Z., Yao, L., Cai, W., and Li, X.: Shape-controlled synthesis and characterization of YF3 truncated octahedral nanocrystals. Cryst. Growth Des. 7, 854 (2007).CrossRefGoogle Scholar
31.Wang, M., Huang, Q., Zhong, H., Chen, X., Xue, Z., and You, X.: Formation of YF3 nanocrystals and their self-assembly into hollow peanut-like structures. Cryst. Growth Des. 7, 2106 (2007).CrossRefGoogle Scholar
32.Wang, X., Zhuang, J., Peng, Q., and Li, Y.: A general strategy for nanocrystal synthesis. Nature 437, 121 (2005).CrossRefGoogle ScholarPubMed
33.Riley, C. and Sibley, W.: Color centers in KMgF3. Phys. Rev. B 1, 2789 (1970).CrossRefGoogle Scholar
34.Wang, G. and Peng, Q.: Tunable photoluminescence of NaYF4:Eu nanocrystals by Sr2+ doping. J. Solid State Chem. 184, 59 (2011).CrossRefGoogle Scholar