Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T16:03:04.743Z Has data issue: false hasContentIssue false

Synthesis and characterization of tungsten oxide nanorods

Published online by Cambridge University Press:  01 December 2004

D.Z. Guo
Affiliation:
Department of Electronics, Peking University, Beijing 100871, People’s Republic of China; and Laboratoire de Microscopies et d’Etude de Nanostructures, Université de Reims, 51687 Reims cedex 02, France
K. Yu-Zhang
Affiliation:
Laboratoire de Microscopies et d’Etude de Nanostructures, Université de Reims, 51687 Reims cedex 02, France
A. Gloter
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud, CNRS UMR 8502, 91405 Orsay, France
G.M. Zhang
Affiliation:
Department of Electronics, Peking University, Beijing 100871, People’s Republic of China
Z.Q. Xue
Affiliation:
Department of Electronics, Peking University, Beijing 100871, People’s Republic of China
Get access

Abstract

Single crystalline nanorods (15–200 nm in diameter and hundreds nanometers in length) have been formed on the carbon-covered W wires by simple electric heating under a vacuum of 5 × 10−4 Pa. The chemical composition and crystalline structure of the nanorods were carefully investigated by various characterization techniques such as scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, energy dispersive x-ray spectroscopy and electron energy loss spectroscopy. After ruling out any possible existence of carbon nanotubes (CNTs), tungsten carbide, W–Fe alloying, and formation of other types of tungsten oxides, monoclinic W18O49 phase has been well identified. The mechanism of nanorod formation of sub-tungsten oxide (∼WO2.7 compared to WO3) will be discussed in relation to the sample preparation conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Franke, E.B., Trimble, C.L., Hale, J.S., Schubert, M. and Woollam, J.A.: Infrared switching electrochromic devices based on tungsten oxide. J. Appl. Phys. 88, 5777 (2000).CrossRefGoogle Scholar
2Solis, J.L., Hoel, A., Lantto, V. and Granqvist, G.G.: Infrared spectroscopy study of electrochromic nanocrystalline tungsten oxide films made by reactive advanced gas deposition. J. Appl. Phys. 89, 2727 (2001).CrossRefGoogle Scholar
3Meda, L., Breitkopf, R.C., Haas, T.E. and Kirss, R.U.: Investigation of electrochromic properties of nanocrystalline tungsten oxide thin film. Thin Solid Films 402, 126 (2002).CrossRefGoogle Scholar
4Lee, K.H., Fang, Y.H., Lee, W.J., Ho, J.J., Chen, K.H. and Liao, K.S.: Novel electrochromic devices (ECD) of tungsten oxide (WO3) thin film integrated with amorphous silicon germanium photodetector for hydrogen sensor. Sens. Actuators B 69, 96 (2000).CrossRefGoogle Scholar
5Boulova, M., Gaskov, A. and Lucazeau, G.: Tungsten oxide reactivity versus CH4, CO and NO2 molecules studied by Raman spectroscopy. Sens. Actuators B 81, 99 (2001).CrossRefGoogle Scholar
6Bamwenda, G.R. and Arakawa, H.: The visible light induced photocatalytic activity of tungsten trioxide powders. Appl. Catal. A 210, 181 (2001).CrossRefGoogle Scholar
7Li, F.B., Gu, G.B., Li, X.J. and Wan, H.F.: Preparation, characterization and photo-catalytic behavior of WO3/TiO2 nanopowder. Acta Phys.—Chim. Sinica 16, 997 (2000).Google Scholar
8Hao, J., Studenikin, S.A. and Cocivera, M.: Transient photoconductivity properties of tungsten oxide thin films prepared by spray pyrolysis. J. Appl. Phys. 90, 5064 (2001).CrossRefGoogle Scholar
9Salje, E.K.H.: Polarons and bipolarons in tungsten oxide, WO3-x. Eur. J. Solid State Inorg. Chem. 31, 651 (1994).Google Scholar
10Aird, A., Domeneghetti, M.C., Mazzi, F., Tazzoli, V. and Salje, E.K.H.: Sheet superconductivity in WO3-x: Crystal structure of the tetragonal matrix. J. Phys. Condens. Matter 10, L569 (1998).CrossRefGoogle Scholar
11Baraton, M-I., Merhari, L., Ferkel, H. and Castagnet, J-F.: Comparison of the gas sensing properties of tin, indium and tungsten oxides nanopowders: Carbon monoxide and oxygen detection. Mater. Sci. Eng. C 19, 315 (2002).CrossRefGoogle Scholar
12Solis, J.L., Saukko, S., Kish, L., Granqvist, C.G. and Lantto, V.: Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films 391, 255 (2001).CrossRefGoogle Scholar
13Li, S.T. and El-Shall, M.S.: Synthesis and characterization of photochromic molybdenum and tungsten oxide nanoparticles. Nanostruct. Mater. 12, 215 (1999).CrossRefGoogle Scholar
14Zhu, Y.Q., Hu, W., Hsu, W.K., Terrones, M., Grobert, N., Hare, J.P., Kroto, H.W., Walton, D.R.M. and Terrones, H.: Tungsten oxide tree-like structures. Chem. Phys. Lett. 309, 327 (1999).CrossRefGoogle Scholar
15Liu, Z., Bando, Y. and Tang, C.: Synthesis of tungsten oxide nanowires. Chem. Phys. Lett. 372, 179 (2003).CrossRefGoogle Scholar
16Koltypin, Y., Nikitenko, S.I. and Gedanken, A.: The sonochemical preparation of tungsten oxide nanoparticles. J. Mater. Chem. 12, 1107 (2002).CrossRefGoogle Scholar
17Hu, W.B., Zhu, Y.Q., Hsu, W.K., Chang, B.H., Terrones, M., Grobert, N., Terrones, H., Hare, J.P., Kroto, H.W. and Walton, D.R.M.: Generation of hollow crystalline tungsten oxide fibres. Appl. Phys. A 70, 231 (2000).CrossRefGoogle Scholar
18Diehl, R., Brandt, G. and Salje, E.: The crystal structure of triclinic WO3. Acta Crystallogr. B 34, 1105 (1978).CrossRefGoogle Scholar
19Salje, E. and Viswanathan, K.: Physical properties and phase transitions in WO3. Acta Crystallogr. A 31, 356 (1975).CrossRefGoogle Scholar
20Kim, A.J.H. and Kim, K.L.: A study of preparation of tungsten nitride catalysts with high surface area. Appl. Catal. A 181, 103 (1999).CrossRefGoogle Scholar
21Aird, A. and Salje, E.K.H.: Sheet superconductivity in twin walls: Experimental evidence of WO3-x. J. Phys. Condens. Mater. 10, L377 (1998).CrossRefGoogle Scholar
22Zhu, Y.T. and Manthiram, A.: New route for the synthesis of tungsten oxide bronzes. J. Solid State Chem. 110, 187 (1994).CrossRefGoogle Scholar
23Mohammad, A.A. and Gillet, M.: Phase transformations in WO3 thin films during annealing. Thin Solid Films 408, 302 (2002).CrossRefGoogle Scholar
24Viswanathan, K., Brandt, K. and Salje, E.: Crystal structure and charge carrier concentration of W18O49. J. Solid State Chem. 36, 45 (1981).CrossRefGoogle Scholar
25Dobson, M.M. and Tilley, R.J.T.: A new pseudo-binary tungsten oxide, W17O47. Acta Crystallogr. B 44, 474 (1988).CrossRefGoogle Scholar
26Berak, J.M. and Sienko, M.J.: Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. J. Solid State Chem. 2, 109 (1970).CrossRefGoogle Scholar
27Schlittler, R.R., Seo, J.W., Gimzewski, J.K., Durkan, C., Saifullah, M.S.M. and Welland, M.E.: Single crystals of single-walled carbon nanotubes formed by self-assembly. Science 292, 1136 (2001).CrossRefGoogle ScholarPubMed
28Chrisholm, M., Wang, Y., Lupini, A.R., Eres, G., Puretzky, A.A., Brinson, B., Melechko, A.V., Geohegan, D.B., Cui, H., Johnson, M.P., Pennycook, S.J., Lowndes, D.H., Arepalli, S., Kittrell, C., Sivaram, S., Kim, M., Lavin, G., Kono, J., Hauge, R. and Smalley, R.E.: Comment on “Single crystals of single-walled carbon nanotubes formed by self-assembly”. Science 300, 1236b (2003).CrossRefGoogle Scholar
29Welland, M.E., Durkan, C., Saifullah, M.S.M., Seo, J.W., Schlittler, R.R. and Gimzewsk, J.K.: Response to Comment on “Single crystals of single-walled carbon nanotubes formed by self-assembly”. Science 300, 1236c (2003).CrossRefGoogle Scholar
30Braidy, N., Khakani, M.A. El and Botton, G.A.: Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem. Phys. Lett. 354, 88 (2002).CrossRefGoogle Scholar
31Journet, C., Maser, W., Bernir, P., Loiseau, A., Delachapelle, M., Lefrant, S., Deniard, P., Lee, R. and Fischer, J.: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756 (1997).CrossRefGoogle Scholar
32Pyper, O., Kaschner, A. and Thomsen, C.: In situ Raman spectroscopy of the electrochemical reduction of WO3 thin films in various electrolytes. Sol. Energy Mater. Sol. Cell. 71, 511 (2002).CrossRefGoogle Scholar
33Purans, J., Kuzmin, A., Parent, Ph. and Laffon, C.: Study of the electronic structure of rhenium and tungsten oxides on the O K-edge. Physica B. Condens. Matter 259, 1157 (1999).CrossRefGoogle Scholar
34Purans, J., Kuzmin, A., Parent, Ph. and Laffon, C.: X-ray absorption study of the electronic structure of tungsten and molybdenum oxides on the O K-edge. Electrochem. Acta 46, 1973 (2001).CrossRefGoogle Scholar
35Bullet, D.W.: Bulk and surface electron states in WO3 and tungsten bronzes. J. Phys. C 16, 2197 (1983).CrossRefGoogle Scholar
36Villars, P. and Calvert, L.D.: Person’s Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), p. 4792Google Scholar
37Lassner, E. and Schubert, W.D.: Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic/Plenum Publishers, New York, NY, 1999), p. 85176CrossRefGoogle Scholar
38Binary Alloy Phase Diagram, 2nd ed., edited by Massalski, T.B. (ASM International, Metals Park, OH, 1990).Google Scholar