Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T03:07:33.301Z Has data issue: false hasContentIssue false

Synthesis and characterization of poly(vinylidene fluoride)/carbon nanotube composite piezoelectric powders

Published online by Cambridge University Press:  27 July 2012

Jhunu Chatterjee*
Affiliation:
Department of Industrial and Manufacturing Enginnering, High-Performance Institute, Florida State University, Tallahassee, Florida 32310
Naomi Nash
Affiliation:
Department of Industrial and Manufacturing Enginnering, High-Performance Institute, Florida State University, Tallahassee, Florida 32310
Pierre-Jean Cottinet
Affiliation:
Department of Industrial and Manufacturing Enginnering, High-Performance Institute, Florida State University, Tallahassee, Florida 32310
Ben Wang
Affiliation:
Department of Industrial and Manufacturing Enginnering, High-Performance Institute, Florida State University, Tallahassee, Florida 32310
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanocomposite piezoelectric powders comprising polyvinylidene fluoride (PVDF) and carbon nanotubes (CNTs) were synthesized using a novel process, which combines ultrasonication and solvent-nonsolvent mixture-induced crystallization at very low temperatures ≤10 °C. The morphological and thermal properties of these composite powders were extensively studied. Scanning electron microscopy characterization showed that these composite powders have polymer particles with an average diameter of 150 nm. Fourier transform infrared spectroscopy, differential scanning calorimetry and wide-angle x-ray scattering analyses confirmed that at CNT concentrations of 0.05–20 wt% this process introduces the β-phase in both PVDF/single-walled CNT (SWCNT) and PVDF/multiwalled CNT (MWCNT) composite powders. Both types of composite powders (PVDF-multiwalled and PVDF-single-walled nanotubes) have shown piezoelectric response at different voltages up to 1% loading of multiwalled nanotubes (MWCNTs) and 0.5% loading of single-walled nanotubes (SWCNTs) in composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ajayan, P.M. and Stephan, O.: Aligned carbon nanotube-arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212 (1994).CrossRefGoogle Scholar
2.Moniruzzaman, M. and Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16), 5194 (2006).CrossRefGoogle Scholar
3.Cadek, M., Coleman, J.N., Ryan, K.P., Nicolosi, V., Bister, G., Fonseca, A., Nagy, J.B., Szostak, K., Béguin, F., and Blau, W.J.: Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area. Nano. Lett. 4(2), 353 (2004).CrossRefGoogle Scholar
4.Grossiord, N., Loos, J., Regev, O., and Koning, C.E: Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 18(5), 1089 (2006).CrossRefGoogle Scholar
5.McClory, C., Chin, S.J., and McNally, R.: Polymer/carbon nanotube composites. Aust. J. Chem. 62, 762 (2009).CrossRefGoogle Scholar
6.Ajayan, P.M. and Tour, J.M.: Nanotube composites. Nature 447, 1066 (2007).CrossRefGoogle ScholarPubMed
7.Tran, M.Q., Shaffer, M.S.P., and Bismarck, A.: Manufacturing carbon nanotube/PVDF nanocomposite powders. Macromol. Mater. Eng. 293, 111 (2008).CrossRefGoogle Scholar
8.Yun, S., Lo, V., Noorman, J., Davis, J., Russell, R.A., Holden, P.J., and Gadd, G.E.: Morphology of composite particles of single-walled carbon nanotubes/biodegradable polyhydroxyalkanoates prepared by spray drying. Polym. Bull. 64, 99 (2010).CrossRefGoogle Scholar
9.Kawai, H.: The piezoelectricity of poly (vinylidene fluoride). J. Appl. Phys. 8, 975 (1969).CrossRefGoogle Scholar
10.Lovinger, A.J.: Ferroelectric polymers. Science 220, 115 (1983).CrossRefGoogle ScholarPubMed
11.Lee, J.S., Kim, G.H., Oh, K.H., Kim, H.T., Hwang, S.S., and Hong, S.M.: Crystal structure and ferroelectric properties of poly(vinylidene fluoride)-carbon nanotube nanocomposite film. Mol. Cryst. Liq. Cryst. 491, 247 (2008).CrossRefGoogle Scholar
12.Gregorio, R. Jr: Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 100, 3272 (2006).CrossRefGoogle Scholar
13.Nam, Y.W., Kim, W.N., Cho, Y.H., Chae, D.W., Kim, G.H., Hong, S.P., Hwang, S.S, and Hong, S.M.: Morphology and physical properties of binary blend based on PVDF and multiwalled carbon nanotube. Macromol. Symp. 249250, 478 (2007).CrossRefGoogle Scholar
14.Branciforti, M.C., Sencades, V., Lanceros-Mendez, S., and Gregorio, R.: New technique of processing highly oriented poly(vinylidene fluoride) films exclusively in the β phase. J. Polym. Sci., Part B: Polym. Phys. 45, 2793 (2007).CrossRefGoogle Scholar
15.Levi, N., Czrew, R., Xing, S., Iyer, P., and Carroll, D.L.: Properties of polyvinylidene difluoride-carbon nanotube blends. Nano Lett. 4, 1267 (2004).CrossRefGoogle Scholar
16.Manna, S. and Nandi, A.K.: Piezoelectric β-polymorph in poly(vinylidene fluoride)-functionalized multiwalled carbon nanotube nanocomposite. J. Phys. Chem. C 111, 14670 (2007).CrossRefGoogle Scholar
17.Yu, S., Zheng, W., Yu, W., Zhang, Y., Jiang, Q., and Zhao, Z.: Formation mechanism of β–phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42, 8870 (2009).CrossRefGoogle Scholar
18.Dukat, M. and Zaryicka, A.: Dielectric and piezoelectric properties of PZT type ceramics obtained by sol-gel method. Arch. Acoust. 32, 65 (2007).Google Scholar
19.Zhao, Z., Zheng, W., Yu, W., and Long, B.: Electrical conductivity of poly(vinylidene fluoride)/carbon nanotube composites with spherical substructure. Carbon 47, 2112 (2009).CrossRefGoogle Scholar
20.Zhang, S.J. and Kumar, S.: Shaping polymer particles by carbon nanotubes. Macromol. Rapid Commun. 29, 557 (2008).CrossRefGoogle Scholar
21.Gregorio, R. Jr. and Ueno, E.M.: Effect of crystalline phase, orientation and temperature on the dielectric properties of poly(vinylidene fluoride) (PVDF). J. Mater. Sci. 34, 4489 (1979).CrossRefGoogle Scholar
22.Guerra, G., Karasz, F.E., and Macknight, W.J.: On blends of poly(vinylidene fluoride) and poly(vinyl) fluoride. Macromolecules 19, 1935 (1986).CrossRefGoogle Scholar
23.Dutta, J. and Nandi, A.K.: Cocrystallization of poly(vinylidene flouoride) and vinylidene fluoride-tetrafluoroethylene blends: 3. Structural study. Polymer 38, 2719 (1997).CrossRefGoogle Scholar
24.Kobayashi, M., Tashiro, K., and Tadokoro, H.: Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules 8, 158 (1975).CrossRefGoogle Scholar
25.Huang, W., Edenzon, K., Fernandez, L., Razmpour, S., Woodburn, J., and Cebe, P.: Nanocomposites of poly(vinylidene fluoride) with multiwalled carbon nanotubes. J. Appl. Polym. Sci. 115, 3238 (2010).CrossRefGoogle Scholar
26.Damjanovic, D. and Newnham, R.E.: Electrostrictive and piezoelectric materials for actuator applications. J. Intell. Mater. Syst. Struct. 3, 190 (1992).CrossRefGoogle Scholar
27.Wang, X., Guyomar, D., Yuse, K., Lallart, M., and Petit, L.: Impact force detection using an energy flow estimator with piezoelectric sensors. Front. Mech. Eng. Chin. 5, 194203 (2010).CrossRefGoogle Scholar
28.Muensita, S. and Rakbamrung, P.: Low- and high-content nano-loaded electroactive polyvinylidene fluoride polymer in Nanoelectronics Conference (INEC), 3rd International. (IEEE, Hong Kong, China, 2010) pp. 378.Google Scholar
29.Satish, B., Sridevi, K., and Vijaya, M.S.: Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique. J. Phys. D: Appl. Phys. 35, 2048 (2002).CrossRefGoogle Scholar
30.Das-Gupta, D.K.: Piezo- and pyroelectricity in polymer electrets and their applications, in (ISE 9), 9th International Symposium on Electrets. (IEEE, Shanghai, China, 1996) 807812.CrossRefGoogle Scholar
31.Li, X. and Zhang, Y.: A constitutive model for piezoelectric paint with mixed connectivity. J. Intell. Mater. Syst. Struct. 21, 1213 (2010).Google Scholar
32.Hu, G., Zhao, C., Zhang, S., Yang, M., and Wang, Z.: Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multiwalled carbon nanotubes. Polymer 47, 480 (2006).CrossRefGoogle Scholar
33.Moisala, A., Li, Q., Kinloch, I.A., and Windle, A.H.: Thermal and electrical conductivity of single- and multiwalled carbon nanotube-epoxy composite. Compos. Sci. Technol. 66, 1285 (2006).CrossRefGoogle Scholar
34.Slobodian, P., Lengálová, A., Sáha, P., and Šlouf, M.: Poly(methyl methacrylate)/multiwalled carbon nanotubes composites prepared by solvent cast technique. J. Reinf. Plast. Compos. 26, 1705 (2007).CrossRefGoogle Scholar
35.Kang, J.H., Park, C., Gaik, S.J., Lowther, S.E., and Harrison, J.S.: The effect of single-walled carbon nanotubes on the dipole orientation and piezoelectric properties of polymer composites. Nano 1, 77 (2006).CrossRefGoogle Scholar
36.Zhang, H., Li, J-F., and Zhang, B-P.: Sintering and piezoelectric properties of cofired lead zirconate titanate/Ag composites. J. Am. Chem. Soc. 89, 1330 (2006).Google Scholar
37.Liu, X., Xiong, C., Sun, H., Dong, L-J., Li, R., and Liu, Y.: Piezoelectric and dielectric properties of PZT/PVC and graphite doped with PZT/PVC composites. Mater. Sci. Eng., B 127, 261 (2006).CrossRefGoogle Scholar
38.Qureshi, A., Mergen, A., Eroglu, M.S., Singh, N.L., and Gulluoglu, A.: Dielectric properties of polymer composites filled with different metals. J. Macromol. Sci. Part A Pure Appl. Chem. 45, 462 (2008).CrossRefGoogle Scholar
39.Huang, X.Y., Jiang, P.K., and Kim, C.U.: Electrical properties of polyethylene/aluminum nanocomposites. J. Appl. Phys. 102, 124103 (2007).CrossRefGoogle Scholar
40.Mitchell, B.S.: An Introduction to Materials Engineering and Science for Chemical and Materials Engineers (Wiley-IEEE, Canada, 2004); p. 816.Google Scholar
41.Bryning, M.B., Islam, M.F., Kikkawa, J.M., and Yodh, A.G.: Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites. Adv. Mater. 17, 1186 (2005).CrossRefGoogle Scholar