Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T03:13:38.939Z Has data issue: false hasContentIssue false

Synthesis and characterization of Ni incorporated titanium dioxide thin films

Published online by Cambridge University Press:  06 November 2018

Deepak Kumar
Affiliation:
Department of Physics, Graphic Era Hill University, Dehradun 248002, India
Prasanta Mandal
Affiliation:
Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, India
Anil Singh
Affiliation:
Department of Physics, Graphic Era Hill University, Dehradun 248002, India
Charu Pant
Affiliation:
Centre for Nanotechnology, University of Petroleum and Energy Studies, Dehradun 248007, India
Sudesh Sharma*
Affiliation:
Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Thin films of insulating Ti1−xNixO2 (x = 0.00, 0.05, 0.10, and 0.15) are synthesized by the spray pyrolysis technique. All the films are seen to crystallize into polycrystalline anatase phase of TiO2. However, weak signature of the NiTiO3 phase is also observed for the films having higher Ni ion concentration. Optical absorption analysis suggests nonmonotonous band gap decrease from 3.67 to 3.59 eV with respect to added concentration of Ni ions unto ‘x’ = 0.10 in the TiO2 matrix. The presence of ferromagnetic ordering at room temperature in Ni incorporated TiO2 films is revealed by M–H measurements. Calculated values of saturation magnetization indicate that the observed ferromagnetism is not due to the presence of Ni clusters or segregation of other ferromagnetic phase. Electrically insulating nature of the films suggests that the observed FM ordering is most probably due to the ferromagnetic interaction between bound magnetic polarons which formed due to the creation of oxygen vacancies or defects.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dietl, T., Ohno, H., Matsukur, F., Cibert, J., and Ferrad, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000).CrossRefGoogle ScholarPubMed
Zutic, I., Fabian, J., and Sarma, S.D.: Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).CrossRefGoogle Scholar
Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., and Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal doped titanium dioxide. Science 291, 854 (2001).CrossRefGoogle ScholarPubMed
Hoa, N.T.Q. and Huyen, D.N.: Comparative study of room temperature ferromagnetism in undoped and Ni-doped TiO2 nanowires synthesized by solvothermal method. J. Mater. Sci.: Mater. Electron. 24, 793 (2013).Google Scholar
Bahadur, N., Pasricha, R., Govind, , Chand, S., and Kotnala, R.K.: Effect of Ni doping on the microstructure and high Curie temperature ferromagnetism in sol–gel derived titania powders. Mater. Chem. Phys. 133, 471 (2012).CrossRefGoogle Scholar
Cho, J.H., Hwang, T.J., Joh, Y.G., Kim, E.C., Kim, D.H., Lee, K.J., Park, H.W., Ri, H-C., Kim, J.P., and Cho, C.R.: Room-temperature ferromagnetism in highly-resistive Ni-doped TiO2. Appl. Phys. Lett. 88, 092505 (2006).CrossRefGoogle Scholar
Hong, N.H., Prellier, W., Sakai, J., and Hassini, A.: Fe- and Ni-doped TiO2 thin films grown on LaAlO3 and SrTiO3 substrates by laser ablation. Appl. Phys. Lett. 84, 2850 (2004).CrossRefGoogle Scholar
Gao, H., Tian, J., Kong, H., Yang, P., Zhang, W., and Chu, J.: Optical and magnetic properties of mixed crystal Ti0.95Ni0.05O2 films deposited on Si substrates by sol–gel method. Surf. Coat. Technol. 228, 162 (2013).CrossRefGoogle Scholar
Pinto, J.V., Cruz, M.M., da Silva, R.C., Alves, E., and Godinho, M.: Magnetic properties of TiO2 rutile implanted with Ni and Co. J. Magn. Magn. Mater. 294, e73 (2005).CrossRefGoogle Scholar
Priour, D.J. and Das Sarma, S.: Phase diagram of the disordered RKKY model in dilute magnetic semiconductors. Phys. Rev. Lett. 97, 127201 (2006).CrossRefGoogle ScholarPubMed
Yamasaki, T., Fukumura, T., Yamada, Y., Nakano, M., Uneo, K., Makino, T., and Kawasaki, M.: Co-doped TiO2 films grown on glass: Room-temperature ferromagnetism accompanied with anomalous Hall effect and magneto-optical effect. Appl. Phys. Lett. 94, 102515 (2009).CrossRefGoogle Scholar
Griffin, K.A., Pakhomov, A.B., Wang, C.M., Heald, S.M., and Krishnan, K.M.: Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2. Phys. Rev. Lett. 94, 157 (2005).CrossRefGoogle ScholarPubMed
Punnoose, A., Seehra, M.S., Park, W.K., and Moodera, J.S.: On the room temperature ferromagnetism in Co-doped TiO2 films. J. Appl.Phys. 93, 7867 (2003).CrossRefGoogle Scholar
Stampe, P.A., Kennedy, R.J., Xin, Y., and Parker, J.S.: Investigation of the cobalt distribution inTiO2:Co thin films. J. Appl. Phys. 92, 7114 (2002).CrossRefGoogle Scholar
Xu, Q.Y., Schmidt, H., Zhou, S.Q., Potzger, K., Helm, M., Hochmuth, H., Lorenz, M., Setzer, A., Esquinazi, P., Meinecke, C., and Grundmann, M.: Room temperature ferromagnetism in ZnO films due to defects. Appl. Phys. Lett. 92, 082508 (2008).CrossRefGoogle Scholar
Venkatesan, M., Fitzgerald, C.B., and Coey, J.M.D.: Thin films: Unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004).CrossRefGoogle Scholar
Hong, N.H., Sakai, J., Poirot, N., and Brize, V.: Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys. Rev. B 73, 132404 (2006).CrossRefGoogle Scholar
Nguyen, N.H., Prellier, W., Sakai, J., and Ruyter, A.: Substrate effects on the room-temperature ferromagnetism in Co-doped TiO2 thin films grown by pulsed laser deposition. J. Appl. Phys. 95, 7378 (2004).CrossRefGoogle Scholar
Chambers, S.A., Droubay, T., Wang, C.M., Lea, A.S., Farrow, R.F.C., Folks, L., Deline, V., and Anders, S.: Clusters and magnetism in epitaxial Co-doped TiO2 anatase. Appl. Phys. Lett. 82, 1257 (2003).CrossRefGoogle Scholar
Kaspar, T.C., Droubay, T., McCready, D.E., Nachimuthu, P., Heald, S.M., Wang, C.M., Lea, A.S., Shutthanandan, V., Chambers, S.A., and Toney, M.F.: Magnetic properties of epitaxial Co-doped anatase TiO2 thin films with excellent structural quality. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 24, 2012 (2006).CrossRefGoogle Scholar
Mann, H.S., Lang, B.N., Schwab, Y., Niemelä, J.P., Karppinen, M., and Scarel, G.: The performance of small scale multi-generation technologies. J. Vac. Sci. Technol., A 33, 01A124 (2015).CrossRefGoogle Scholar
Niemelä, J.P., Yamauchi, H., and Karppine, M.: Conducting Nb-doped TiO2 thin films fabricated with an atomic layer deposition technique. Thin Solid Films 551, 19 (2014).CrossRefGoogle Scholar
De, R., Haque, S.M., Tripathi, S., Rao, K.D., Singh, R., Som, T., and Sahoo, N.K.: Temperature dependent optical characterization of Ni–TiO2 thin films as potential photocatalytic material. AIP Adv. 7, 095115 (2017).CrossRefGoogle Scholar
Gole, J.L., Prokes, S.M., and Glembocki, O.J.: Efficient room-temperature conversion of anatase to rutile TiO2 induced by high-spin ion doping. J. Phys. Chem. C 112, 1782 (2008).CrossRefGoogle Scholar
Kharoubi, A., Bouaza, A., Benrabah, B., Ammari, A., and Khiali, A.: Characterization of Ni-doped TiO2 thin films deposited by dip-coating technique. Eur. Phys. J.: Appl. Phys. 72, 30301 (2015).Google Scholar
Renugadevi, R., Venkatachalam, T., Narayanasamy, R., and Kirupha, S.D.: Preparation of Co doped TiO2 nano thin films by sol gel technique and photocatalytic studies of prepared films in tannery effluent. Optik 127, 10127 (2016).CrossRefGoogle Scholar
Tian, J., Gao, H., Deng, H., Sun, L., Kong, H., Yang, P., and Chu, J.: Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon(100) substrates by sol–gel process. J. Alloys Compd. 581, 318 (2013).CrossRefGoogle Scholar
Suryanarayanan, R., Naik, V.M., Kharel, P., Talagala, P., and Naik, R.: Ferromagnetism at 300 K in spin-coated films of Co doped anatase and rutile-TiO2. Solid State Commun. 133, 439 (2005).CrossRefGoogle Scholar
Xu, J.P., Wang, J.F., Lin, Y.B., Liu, X.C., Lu, Z.L., Lu, Z.H., Lv, L.Y., Zhang, F.M., and Du, Y.W.: Effect of annealing ambient on the ferromagnetism of Mn-doped anatase TiO2 films. J. Phys. D: Appl. Phys. 40, 4757 (2007).CrossRefGoogle Scholar
Zielinska, A., Kowalska, E., Sobczak, J.W., Łacka, I., Gazda, M., Ohtani, B., Hupka, J., and Zaleska, A.: Silver-doped TiO2 prepared by microemulsion method surface properties, bio-and photoactivity. Sep. Purif. Technol. 72, 309 (2010).CrossRefGoogle Scholar
Adomnitel, C., Luca, D., Girtan, M., Sandu, I., Nica, V., Sandu, A.V., and Mardare, D.: Nb-doped TiO2 thin films deposited by spray pyrolysis method. J. Optoelectron. Adv. Mater. 15, 519 (2013).Google Scholar
Golego, N., Studenikin, S.A., and Cocivera, M.: Spray pyrolysis preparation of porous polycrystalline thin films of titanium dioxide containing Li and Nb. J. Mater. Res. 14, 698 (1999).CrossRefGoogle Scholar
Patil, L.A., Suryawanshi, D.N., Pathan, I.G., and Patil, D.M.: Nickel doped spray pyrolyzed nanostructured TiO2 thin films for LPG gas sensing. Sens. Actuators, B 176, 514 (2013).CrossRefGoogle Scholar
Kuznetsov, A.Y., Machado, R., Gomes, L.S., Achete, C.A., Swamy, V., Mud-dle, B.C., and Prakapenka, V.: Size dependent of rutile TiO2 lattice parameters determined via simultaneous size, strain and shape modeling. Appl. Phys. Lett. 94, 193117 (2009).CrossRefGoogle Scholar
Wilso, G.J., Matijasevich, A.S., Mitchell, D.R., Schulz, J.C., and Will, G.D.: Modification of TiO2 for enhanced surface properties: Finite ostwald ripening by a microwave hydrothermal process. Langmuir 22, 2016 (2006).CrossRefGoogle Scholar
Asanuma, T., Matsutani, T., Liu, C., Mihara, T., and Kiuchi, M.: Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma. J. Appl. Phys. 95, 6011 (2004).CrossRefGoogle Scholar
Tauc, J., Grigorovich, R., and Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627 (1966).CrossRefGoogle Scholar
Manifacier, J.C., Gasiot, J., and Fillard, J.P.: A simple method for the determination of the optical constants n, h and the thickness of a weakly absorbing thin film. J. Phys. E: Sci. Instrum. 9, 1002 (1976).CrossRefGoogle Scholar
Hwang, K.S., Jeong, J.H., Ahn, J.H., and Kim, B.H.: Hydrophilic/hydrophobic conversion of Ni-doped TiO2 thin films on glass substrates. Ceram. Int. 32, 935 (2006).CrossRefGoogle Scholar
Jing, D., Zhang, Y., and Guo, L.: Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem. Phys. Lett. 415, 74 (2005).CrossRefGoogle Scholar
Pandiyan, R., Micheli, V., Ristic, D., Bartali, R., Pepponi, G., Barozzi, M., Gottardi, G., Ferrarid, M., and Laidani, N.: Structural and near-infra red luminescence properties of Nd-doped TiO2 films deposited by RF sputtering. J. Mater. Chem. 22, 22424 (2012).CrossRefGoogle Scholar
Santara, B., Giri, P.K., Dhara, S., Imakita, K., and Fujii, M.: Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons. J. Phys. D: Appl. Phys. 47, 235304 (2014).CrossRefGoogle Scholar
Wang, H., Zong, Z., and Yan, Y.: Structural effects of field emission from GaN nanofilms on SiC substrates. J. Appl. Phys. 115, 233909 (2014).CrossRefGoogle Scholar
Hou, D.L., Meng, H.J., Jia, L.Y., Ye, X.J., Zhou, H.J., and Li, X.L.: Oxygen vacancy enhanced the room temperature ferromagnetism in Ni-doped TiO2 thin films. Phys. Lett. A 364, 318 (2007).CrossRefGoogle Scholar
Zhang, J., Yun, Q., and Wang, Q.: Room temperature ferromagnetism of Ni-doped SnO2 system. Mod. Appl. Sci. 4, 124 (2010).CrossRefGoogle Scholar
Chikazumi, S.: Physics of Magnetism (Krieger, Malabar, Florida, 1978); p. 19.Google Scholar
Liu, X.J., Zhu, X.Y., Song, C., Zeng, F., and Pan, F.: Intrinsic and extrinsic origins of room temperature ferromagnetism in Ni-doped ZnO films. J. Phys. D: Appl. Phys. 42, 035004 (2009).CrossRefGoogle Scholar
Hong, N.H., Ruyter, A., Prellier, W., Sakai, J., and Huong, N.T.: Magnetism in Ni-doped SnO2 thin films. J. Phys.: Condens. Matter 17, 6533 (2005).Google Scholar
Park, Y.R., li Choi, S., Lee, J.H., Kim, K.J., and Kim, C.S.: Ferromagnetic properties of Ni-doped rutile TiO2−δ. J. Korean Phys. Soc. 50, 638 (2007).Google Scholar
Jayaram, V. and Rani, B.S.: Soft chemical routes to the synthesis of extended solid solutions of wurtzite ZnO–MO (M = Mg, Co, Ni). Mater. Sci. Eng., A 304, 800 (2001).CrossRefGoogle Scholar
Huang, G.J., Wang, J.B., Zhong, X.L., Zhou, G.C., and Yan, H.L.: Synthesis, structure, and room-temperature ferromagnetism of Ni-doped ZnO nano-particles. J. Mater. Sci. 42, 6464 (2007).CrossRefGoogle Scholar
Pearton, S.J., Heo, W.H., Ivill, M., Norton, D.P., and Steiner, T.: Topical Review: Dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 19, R59 (2004).CrossRefGoogle Scholar
Kaminski, A. and Sarma, S.D.: Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002).CrossRefGoogle ScholarPubMed
Coey, J.M.D., Venkateshan, M., and Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005).CrossRefGoogle ScholarPubMed
Chen, J., Lu, G-H., Cao, H., Wang, T., and Xu, Y.: Ferromagnetic mechanism in Ni-doped anatase TiO2. Appl. Phys. Lett. 93, 172504 (2008).CrossRefGoogle Scholar
Ogale, S.B.: Thin Film and Heterostructures for Oxide Electronics (Springer Science1Business Media, Inc., New York, New York, 2005); p. 245.Google Scholar
Liu, X.F., Gong, W.M., Iqbal, J., He, B., and Yu, R.H.: Structural defects-mediated room-temperature ferromagnetism in Co-doped SnO2 insulating films. Thin Solid Films 517, 6091 (2009).CrossRefGoogle Scholar