Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T05:15:47.510Z Has data issue: false hasContentIssue false

Synthesis and characterization of germanium-centered three-dimensional crystalline porous aromatic framework

Published online by Cambridge University Press:  09 January 2012

Ye Yuan
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Jia Liu
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Hao Ren
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Xiaofei Jing
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Wei Wang
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Heping Ma
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Fuxing Sun*
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Huijun Zhao
Affiliation:
Griffith School of Environment, Griffith University, Queensland 4222, Australia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Tetra(4-dihydroxyborylphenyl)germanium as the tetrahedral units and 1,2,4,5-tetrahydroxybenzene as linkers were selected to form a crystalline porous aromatic framework, CPAF-13, with the planar five-membered BO2C2 ring in its structure by a dehydration reaction. The crystallinity of CPAF-13 was confirmed by x-ray diffraction analysis. The Ar sorption measurement on activated CPAF-13 results in a surface area of 417 m2/g, using Brunauer Emmett Teller model. CPAF-13 also shows a considerable adsorption capacity of H2.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Davis, M.E.: Ordered porous materials for emerging applications. Nature 417, 813 (2002).Google Scholar
2.Eddaoudi, M., Moler, D.B., Li, H.L., Chen, B.L., Reineke, T.M., O’Keeffe, M., and Yaghi, O.M.: Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 34, 319 (2001).CrossRefGoogle ScholarPubMed
3.Long, J.R. and Yaghi, O.M.: The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 38, 1213 (2009).CrossRefGoogle ScholarPubMed
4.Seo, J.S., Whang, D., Lee, H., Jun, S.I., Oh, J., Jeon, Y.J., and Kim, K.: A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404, 982 (2000).CrossRefGoogle ScholarPubMed
5.Ferey, G., Mellot-Draznieks, C., Serre, C., and Millange, F.: Crystallized frameworks with giant pores: Are there limits to the possible? Acc. Chem. Res. 38, 217 (2005).Google Scholar
6.Thomas, A.: Functional materials: From hard to soft porous frameworks. Angew. Chem. In. Ed. 49, 8328 (2010).Google Scholar
7.McKeown, N.B. and Budd, P.M.: Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43, 5163 (2010).CrossRefGoogle Scholar
8.Thomas, A., Kuhn, P., Weber, J., Titirici, M.M., and Antonietti, M.: Porous polymers: Enabling solutions for energy applications. Macromol. Rapid Commun. 30, 221 (2009).CrossRefGoogle ScholarPubMed
9.Cote, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J., and Yaghi, O.M.: Porous, crystalline, covalent organic frameworks. Science 310, 1166 (2005).CrossRefGoogle ScholarPubMed
10.Wan, S., Guo, J., Kim, J., Ihee, H., and Jiang, D.L.: A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. Int. Ed. 47, 8826 (2008).Google Scholar
11.El-Kaderi, H.M., Hunt, J.R., Mendoza-Cortes, J.L., Cote, A.P., Taylor, R.E., O’Keeffe, M., and Yaghi, O.M.: Designed synthesis of 3D covalent organic frameworks. Science 316, 268 (2007).CrossRefGoogle ScholarPubMed
12.Uribe-Romo, F.J., Hunt, J.R., Furukawa, H., Klock, C., O’Keeffe, M., and Yagh, O.M.: A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570 (2009).CrossRefGoogle ScholarPubMed
13.Furukawa, H. and Yaghi, O.M.: Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875 (2009).Google Scholar
14.Tilford, R.W., Mugavero, S.J., Pellechia, P.J., and Lavigne, J.J.: Tailoring microporosity in covalent organic frameworks. Adv. Mater. 20, 2741 (2008).CrossRefGoogle ScholarPubMed
15.Jiang, J.X., Su, F., Niu, H., Wood, C.D., Campbell, N.L., Khimyak, Y.Z., and Cooper, A.I.: Conjugated microporous poly(phenylene butadiynylene)s. Chem. Commun. 4, 486 (2008).Google Scholar
16.Jiang, J.X., Su, F., Trewin, A., Wood, C.D., Campbell, N.L., Niu, H., Dickinson, C., Ganin, A.Y., Rosseinsky, M.J., Khimyak, Y.Z., and Cooper, A.I.: Conjugated microporous poly (aryleneethynylene) networks. Angew. Chem. Int. Ed. 46, 8574 (2007).CrossRefGoogle ScholarPubMed
17.Dawson, R., Laybourn, A., Clowes, R., Khimyak, Y.Z., Adams, D.J., and Cooper, A.I.: Functionalized conjugated microporous polymers. Macromolecules 42, 8809 (2009).Google Scholar
18.Budd, P.M., Ghanem, B.S., Makhseed, S., McKeown, N.B., Msayib, K.J., and Tattershall, C.E.: Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materials. Chem. Commun. 2, 230 (2004).CrossRefGoogle Scholar
19.Budd, P.M., McKeown, N.B., and Fritsch, D.: Free volume and intrinsic microporosity in polymers. J. Mater. Chem. 15, 1977 (2005).CrossRefGoogle Scholar
20.McKeown, N.B. and Budd, P.M.: Polymers of intrinsic microporosity (PIMs): Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675 (2006).CrossRefGoogle ScholarPubMed
21.Wood, C.D., Tan, B., Trewin, A., Niu, H.J., Bradshaw, D., Rosseinsky, M.J., Khimyak, Y.Z., Campbell, N.L., Kirk, R., Stockel, E., and Cooper, A.I.: Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem. Mater. 19, 2034 (2007).CrossRefGoogle Scholar
22.Kuhn, P., Antonietti, M., and Thomas, A.: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450 (2008).CrossRefGoogle ScholarPubMed
23.Ben, T., Ren, H., Ma, S.Q., Cao, D.P., Lan, J.H., Jing, X.F., Wang, W.C., Xu, J., Deng, F., Simmons, J.M., Qiu, S.L., and Zhu, G.S.: Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48, 9457 (2009).CrossRefGoogle ScholarPubMed
24.Ren, H., Ben, T., Wang, E.S., Jing, X.F., Xue, M., Liu, B.B., Cui, Y., Qiu, S.L., and Zhu, G.S.: Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene. Chem. Commun. 46, 291 (2010).Google Scholar
25.Yuan, Y., Sun, F.X., Ren, H., Jing, X.F., Wang, W., Ma, H.H., Zhao, H.J., and Zhu, G.S.: Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules. J. Mater. Chem. 21, 13498 (2011).CrossRefGoogle Scholar
26.Tilford, R.W., Gemmill, W.R., zur Loye, H.C., and Lavigne, J.J.: Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem. Mater. 18, 5296 (2006).Google Scholar
27.Stockel, E., Wu, X.F., Trewin, A., Wood, C.D., Clowes, R., Campbell, N.L., Jones, J.T.A., Khimyak, Y.Z., Adams, D.J., and Cooper, A.I.: High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centered monomers. Chem. Commun. 2, 212 (2009).CrossRefGoogle Scholar
28.Lim, H. and Chang, J.Y.: Preparation of clickable microporous hydrocarbon particles based on adamantane. Macromolecules 43, 6943 (2010).Google Scholar
29.Holst, J.R., Stockel, E., Adams, D.J., and Cooper, A.I.: High surface area networks from tetrahedral monomers: Metal-catalyzed coupling, thermal polymerization, and “click” chemistry. Macromolecules 43, 8531 (2010).CrossRefGoogle Scholar
30.Weber, J. and Thomas, A.: Toward stable interfaces in conjugated polymers: Microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. J. Am. Chem. Soc. 130, 6334 (2008).CrossRefGoogle ScholarPubMed
31.Spitler, E.L. and Dichtel, W.R.: Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2, 672 (2010).CrossRefGoogle ScholarPubMed
32.Lee, J.Y., Wood, C.D., Bradshaw, D., Rosseinsky, M.J., and Cooper, A.I.: Hydrogen adsorption in microporous hypercrosslinked polymers. Chem. Commun. 2670 (2006).Google Scholar
33.McKeown, N.B., Gahnem, B., Msayib, K.J., Budd, P.M., Tattershall, C.E., Mahmood, K., Tan, S., Book, D., Langmi, H.W., and Walton, A.: Towards polymer-based hydrogen-storage materials: Engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angew. Chem. Int. Ed. 45, 1804 (2006).CrossRefGoogle ScholarPubMed
34.Hasell, T., Wood, C.D., Clowes, R., Jones, J.T.A., Khimyak, Y.Z., Adams, D.J., and Cooper, A.I.: Palladium nanoparticle incorporation in conjugated microporous polymers by supercritical fluid processing. Chem. Mater. 22, 557 (2010).Google Scholar
Supplementary material: File

Zhu Supplementary Material

Zhu Supplementary Material

Download Zhu Supplementary Material(File)
File 112.6 KB