Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T08:50:28.207Z Has data issue: false hasContentIssue false

Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting

Published online by Cambridge University Press:  31 January 2011

Sudhakar Shet*
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401; and New Jersey Institute of Technology, Newark, New Jersey 07102
Kwang-Soon Ahn
Affiliation:
Energy & Environment Laboratory, Samsung Advanced Institute of Technology, Yongin-si, Gyeonggi-do 446-712, Republic of Korea
Heli Wang
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
Nuggehalli Ravindra
Affiliation:
New Jersey Institute of Technology, Newark, New Jersey 07102
Mowafak Al-Jassim
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

ZnO thin films with significantly reduced band gaps were synthesized by doping N and codoping Al and N at 100 °C. All the films were synthesized by radiofrequency magnetron sputtering on F-doped tin-oxide-coated glass. We found that codoped ZnO:(Al,N) thin films exhibited significantly enhanced crystallinity compared with ZnO doped solely with N, ZnO:N, at the same growth conditions. Furthermore, annealed ZnO:(Al,N) thin films exhibited enhanced N incorporation over ZnO:N films. As a result, ZnO:(Al,N) films exhibited better photocurrents than ZnO:N films grown with pure N doping, suggesting that charge-compensated donor–acceptor codoping could be a potential method for band gap reduction of wide-band gap oxide materials to improve their photoelectrochemical performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gratzel, M.Photoelectrochemical cells. Nature 414, 338 (2001)CrossRefGoogle ScholarPubMed
2.Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C.Photo-electrochemical hydrogen generation from water using solar energy. Materials related aspects. Int. J. Hydrogen Energy 27, 991 (2002)CrossRefGoogle Scholar
3.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.Visible-light photocatalysis in nitrogen doped titanium oxides. Science 293, 269 (2001)Google Scholar
4.Khan, S.U.M., Al-Shahry, M., Ingler, W.B. Jr.Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002)CrossRefGoogle ScholarPubMed
5.Sakthivel, S., Kisch, H.Angew: Daylight photocatalysis by carbon-modified titanium dioxide. Chem. Int. Ed. 42, 4908 (2003)CrossRefGoogle ScholarPubMed
6.Umebayashi, T., Yamaki, T., Itoh, H., Asai, K.Bandgap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81, 454 (2002)CrossRefGoogle Scholar
7.Kakiuchi, K., Hosono, E., Fujihara, S.Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719. J. Photochem. Photobiol., A 179, 81 (2006)CrossRefGoogle Scholar
8.Jaramillo, T.F., Baeck, S.H., Kleiman-Shwarsctein, A., McFarland, E.W.Combinatorial electrochemical synthesis and screening of mesoporous ZnO for photocatalysis. Macromol. Rapid Commun. 25, 297 (2004)Google Scholar
9.Ahn, K-S., Yan, Y., Al-Jassim, M.Band gap narrowing of ZnO:N films by varying rf sputtering power in O2/N2 mixtures. J. Vac. Sci. Technol., B 25, L23 (2007)CrossRefGoogle Scholar
10.Paluselli, D., Marsen, B., Miller, E.L., Rocheleau, R.E.Nitrogen doping of reactively sputtered tungsten oxide films. Electrochem. Solid-State Lett. 8, G301 (2005)Google Scholar
11.Yamamoto, T., Katayama-Yoshida, H.Solutions using a codoping method to unipolarity for the fabrication of p-type ZnO. Jpn. J. Appl. Phys. 38, L166 (1999)CrossRefGoogle Scholar
12.Matsui, H., Saeki, H., Tabata, H., Kawai, T.Role of Ga for co-doping of Ga with N in ZnO films. Jpn. J. Appl. Phys. 42, 5494 (2003)CrossRefGoogle Scholar
13.Yan, Y., Zhang, S.B., Pantelides, S.T.Control of doping by impurity chemical potentials: Predictions for p-type ZnO. Phys. Rev. Lett. 86, 5723 (2001)CrossRefGoogle ScholarPubMed
14.Liu, Z.W., Yeo, S.W., Ong, C.K.Achieve p-type conduction in N-doped and (Al,N)-co-doped ZnO thin films by oxidative annealing zinc nitride precursors. J. Mater. Res. 22, 2668 (2007)CrossRefGoogle Scholar
15.Liu, J.G., Ye, Z.Z., Zhuge, F., Zeng, Y.J., Zhao, B.H., Zhu, L.P.P-type conduction in N-Al co-doped ZnO thin films. Appl. Phys. Lett. 85, 3134 (2004)CrossRefGoogle Scholar
16.Yuan, G.D., Ye, Z.Z., Zhu, L.P., Qian, Q., Zhao, B.H., Fan, R.X., Perkins, C.L., Zhang, S.B.Control of conduction type in Al- and N-codoped ZnO thin films. Appl. Phys. Lett. 86, 202106 (2005)Google Scholar
17.Ye, Z-Z., Ge, F-Z., Lu, J-G., Zhang, Z-H., Zhu, L-P., Zhao, B-H., Huang, J-Y.Preparation of p-type ZnO films by Al + N-codoping method. J. Cryst. Growth 265, 127 (2004)CrossRefGoogle Scholar
18.Li, B.S., Liu, Y.C., Zhi, Z.Z., Shen, D.Z., Lu, Y.M., Zhang, J.Y., Fan, X.W., Mu, R.X., Henderson, D.O.Optical properties and electrical characterization of p-type ZnO films prepared by thermally oxiding Zn3N2 thin films. J. Mater. Res. 18, 8 (2003)Google Scholar
19.Shet, S., Ahn, K-S., Yan, Y., Deutsch, T., Chrusrowski, K.M., Turner, J., Al-Jassim, M., Ravindra, N.M.Carrier concentration tuning of bandgap-reduced p-type ZnO films by codoping Cu and Ga for improving photoelectrochemical response. J. Appl. Phys. 103, 073504 (2008)Google Scholar
20.Kang, S-H., Kim, J-Y., Kim, Y., Kim, H-S., Sung, Y-E.Surface modification of stretched TiO2 nanotubes for solid state dye-sensitized solar cells. J. Phys. Chem. C 111, 9614 (2007)Google Scholar
21.Akikusa, J., Khan, S.U.M.Photoelectrolysis of water to hydrogen in p-SiC/Pt and n-SiC/TiO2 cells. Int. J. Hydrogen Energy 27, 863 (2002)Google Scholar
22.Joseph, M., Tabata, H., Kawai, T.P-type electrical conduction in ZnO thin films by Ga and N codoping. Jpn. J. Appl. Phys. 38, L1205 (1999)CrossRefGoogle Scholar
23.Futsuhara, M., Yoshioka, K., Takai, O.Optical properties of Zinc oxynitride thin films. Thin Solid Films 317, 322 (1998)CrossRefGoogle Scholar
24.Xu, C.X., Sun, X.W., Zhang, X.H., Ke, L., Chua, S.J.Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotech. 15, 856 (2004)Google Scholar
25.Kim, K.H., Wibowo, R.A., Badrul, M.Properties of Al-doped ZnO thin films sputtered from powder compacted target. Mater. Lett. 60, 1931 (2006)CrossRefGoogle Scholar
26.Ahn, K-S., Yan, Y., Lee, S-H., Deutsch, T., Turner, J., Tracy, C.E., Perkins, C., Al-Jassim, M.Photoelectrochemical properties of N-incorporated ZnO films deposited by reactive RF magnetron sputtering. J. Electrochem. Soc. 154, B956 (2007)CrossRefGoogle Scholar
27.Perkins, C.L., Lee, S.H., Li, X., Asher, S.E., Coutts, T.J.Identification of N chemical states in N-doped ZnO via x-ray photoelectron spectroscopy. J. Appl. Phys. 97, 034907 (2005)CrossRefGoogle Scholar
28.Ahn, K-S., Shet, S., Deutsch, T., Jiang, C-S., Yan, Y., Al-Jassim, M., Turner, J.Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films. J. Power Sources 176, 387 (2008)Google Scholar
29.Ahn, K-S., Yan, Y., Shet, S., Deutsch, T., Turner, J., Al-Jassim, M.Enhanced of photoelectrochemical responses of ZnO films through Ga and N codoping. Appl. Phys. Lett. 91, 231909 (2007)Google Scholar