Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T12:01:23.528Z Has data issue: false hasContentIssue false

Synthesis and characteristics of curable siloxane-based organic-inorganic hybrid materials modified with vinyl and isopropenoxy

Published online by Cambridge University Press:  01 May 2006

Eun-Seok Kang
Affiliation:
Laboratory of Inorganic Photonics Materials, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan; and Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
Masahide Takahashi*
Affiliation:
Laboratory of Inorganic Photonics Materials, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan; and Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
Yomei Tokuda
Affiliation:
Laboratory of Inorganic Photonics Materials, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
Toshinobu Yoko
Affiliation:
Laboratory of Inorganic Photonics Materials, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

New curable organic-inorganic hybrid materials with a low internal optical attenuation of <0.35 dB/cm at the telecommunication wavelength and high thermal stability (∼370 °C) were synthesized by a nonhydrolytic reaction using vinyltriiospropenoxysilane (VTIPS) and diphenylsilanediol (DPSD) in which alcohol condensation takes place without hydrolysis of the starting materials. The molecular structure and the reaction mechanism of the synthesized organic-inorganic hybrid materials were investigated. The nonhydrolytic reaction of VTIPS and DPSD represented a high degree of condensation, and the molecules of the organic-inorganic hybrid materials exhibited the structure of an oligosiloxane modified with diphenyl, vinyl, and isopropenoxy. These organic-inorganic hybrid materials cured by polymerization of vinyl and isopropenoxy groups can be promising candidates for optical applications due to their good optical and thermal properties in addition to the availability of soft-lithography.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sanchez, C., Lebeau, B., Chaput, F., Boilot, J.: Optical properties of functional hybrid organic-inorganic nanocomposites. Adv. Mater. 23, 1969 (2003).CrossRefGoogle Scholar
2.Karkkainen, A.O., Rantala, J.T., Maaninen, A., Jabbour, G.E., Desour, M.R.: Siloxane-based hybrid glass materials for binary and grayscale mask photoimaging. Adv. Mater. 7, 535 (2002).3.0.CO;2-T>CrossRefGoogle Scholar
3.Vioux, A.: Nonhydrolytic sol-gel routes to oxides. Chem. Mater. 9, 2292 (1997).CrossRefGoogle Scholar
4.Mennig, M., Zahnhausen, M., Schmidt, H. A novel nonhydrolytic sol-gel route to low –OH and CH-containing organic-inorganic composites, in Organic-Inorganic Hybrid Materials for Photonics, edited by Liliane, G., Pfalzgraf, Hubert, and Najafi, S.I. (SPIE 3469, San Diego, CA, 1998), p. 68.CrossRefGoogle Scholar
5.Hay, J.N., Raval, H.N.: Synthesis of organic-inorganic hybrids via the nonhydrolytic sol-gel process. Chem. Mater. 13, 3396 (2001).CrossRefGoogle Scholar
6.Mishechkin, O.V., Lu, D., Fallahi, M. Reliability improvement of hybrid organic-inorganic waveguides by dielectric passivation, in Proceedings of the 16th Annual Meeting of the IEEE Laser and Electro-optics Society, edited by Willner, A.E., Esterowitz, L., Delfye, P.J., Hinton, H.S., Wisniewski, M.Y.L., and Dagli, N. (IEEE, Piscataway, NJ, 2003), p. 674.Google Scholar
7.Streppel, U., Dannberg, P., Wachter, C., Brauer, A., Frohlich, L., Houbertz, R., Popall, M.: New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic-organic hybrid) polymers. Opt. Mater. 21, 475 (2002).CrossRefGoogle Scholar
8.Wipfelder, E., Hohn, K.: Epoxysiloxane resins by the condensation of 3-glycidyloxypropyltrimethoxysilane with diphenylsilandiol. Die Ang. Makromol. Chem. 218, 111 (1994).CrossRefGoogle Scholar
9.Buestrich, R., Kahlenberg, F., Popall, M.: ORMORCERs for optical interconnection technology. J. Sol-Gel Sci. Technol. 20, 181 (2001).CrossRefGoogle Scholar
10.Eo, Y.J., Kim, J.H., Ko, J.H., Bae, B.S.: Optical characteristics of photo-curable methacryl-oligosilaxane nano hybrid thick films. J. Mater. Res. 20, 401 (2005).CrossRefGoogle Scholar
11.Houbertz, R., Domann, G., Cronauer, C., Schmitt, A., Martin, H., Park, J.U., Frohlich, L., Buestich, R., Popall, M., Steppel, U., Dannberg, P., Wachter, C., Brauer, A. Inorganic-organic hybrid materials for application in optical devices, in Application, New Markets, Emerging Products, Trends: Optics for Communications, edited by Aegerter, M.A. and Meinema, H.A. (Proceeding of 4th ICCG, Braunschweig, Germany, 2002), p. 605.Google Scholar
12.Kim, S.Y., Augustine, S., Kim, Y.J., Bae, B.S., Woo, S.I., Kang, J.K.: Mechanism and nanosize products of the sol-gel reaction using diphenylsilanediol and 3-methacryloxypropyltrimethoxysilane as precursors. J. Phys. Chem. B 109, 9397 (2005).CrossRefGoogle ScholarPubMed
13.Aramendia, M.A., Borau, V., Jimenez, C., Marinas, J.M., Ruiz, J.R., Urbano, F.J.: α-Arylation of diethyl malonate via enolate with bases in a heterogeneous phase. Tetrahedron Lett. 43, 2847 (2002).CrossRefGoogle Scholar
14.Dubisky, Y., Zaopo, A., Zannoni, G., Zetta, L.: 1H NMR study of the hydrolysis of vinyl trialkoxysilanes. Mater. Chem. Phys. 64, 45 (2000).CrossRefGoogle Scholar
15.Hoebbel, D., Reinert, T., Schmidt, H.: Si-29 NMR investigation of condensation reactions of diphenylsilanediol in presence of Ti-, Zr-, Al-, Sn- and Si-alkoxides. J. Sol-Gel. Sci. Technol. 7, 217 (1996).CrossRefGoogle Scholar
16.Yoshinaga, I., Yamada, N., Katayama, S.: Effect of metal alkoxide complexes on condensation reactions of hydrolyzed phenyltriethoxysilane. J. Sol-Gel. Sci. Technol. 28, 65 (2003).CrossRefGoogle Scholar
17.Eo, Y.J., Lee, T.H., Kim, S.Y., Kang, J.K., Han, Y.S., Bae, B.S.: Synthesis and molecular structure analysis of nano-sized methacrylgrafted polysiloxane resin for fabrication of nano hybrid materials. J. Polym. Sci. B 43, 827 (2005).CrossRefGoogle Scholar
18.Feher, F.J., Newman, D.A., Walzer, J.F.: Silsequioxanes as models for silica surfaces. J. Am. Chem. Soc. 111, 1741 (1989).CrossRefGoogle Scholar
19.Douskey, M.C., Gebhard, M.S., McCormick, A.V., Lange, B.C., Whitman, D.W., Schure, M.R., Beshah, K.: Spectroscopic studies of a novel cyclic oligomer with pendant alkoxysilane groups. Prog. Org. Coat. 45, 145 (2002).CrossRefGoogle Scholar
20.Knoche, T., Muller, L., Klein, R., Neyer, A.: Low loss polymer waveguides at 1300 and 1550 nm using halogenated acrylates. Electron. Lett. 32, 1284 (1996).CrossRefGoogle Scholar
21.Kunnavakkam, M.V., Houlihan, F.M., Schlax, M., Liddle, J.A., Kolodner, P., Nalamasu, O., Rogers, J.A.: Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process. Appl. Phys. Lett. 82, 1152 (2003).CrossRefGoogle Scholar