Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T08:51:05.825Z Has data issue: false hasContentIssue false

Surfactant-assisted synthesis of lanthanide phosphates single-crystalline nanowires/nanorods

Published online by Cambridge University Press:  01 October 2004

Wen-Bo Bu
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People’s Republic of China
Zi-Le Hua
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People’s Republic of China
Ling-Xia Zhang
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People’s Republic of China
Hang-Rong Chen
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People’s Republic of China
Wei-Min Huang
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People’s Republic of China
Jian-Lin Shi*
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People’s Republic of China
*
a) Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

A facile, surfactant-assisted, hydrothermal approach has been developed to synthesize lanthanide phosphate single-crystalline nanowires/nanorods with smooth surface, uniform diameter, and good crystallinity. The surfactant Pluronic P123 was found to play a crucial role on the uniform morphology of lanthanide phosphate single-crystalline nanowires/nanorods. Photoluminescence spectra of the lanthanide phosphate single-crystalline nanowires/nanorods show that these nanowires/nanorods have strong photoluminescent emissions in the ultraviolet-visible and near-infrared regions. The present work is a preliminary and significant step toward the potential luminescent and catalytic applications of lanthanide compound based one-dimensional nanostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cui, Y. and Lieber, C.M.: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851 (2001).CrossRefGoogle ScholarPubMed
2Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).CrossRefGoogle Scholar
3Duan, X., Huang, Y., Cui, Y., Wang, J. and Lieber, C.M.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001).CrossRefGoogle ScholarPubMed
4Wang, Z.L.: Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater . 12, 1295 (2000).3.0.CO;2-B>CrossRefGoogle Scholar
5Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yuan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
6Odom, T.W., Huang, J.L., Kim, P. and Lieber, C.M.: Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B 104, 2794 (2000).CrossRefGoogle Scholar
7Bockrath, M., Liang, W., Bozovie, D., Hafner, J.H., Lieber, C.M., Tinkham, M. and Park, H.: Resonant electron scattering by defects in single-walled carbon nanotubes. Science 291, 283 (2001).CrossRefGoogle ScholarPubMed
8Peng, X., Manna, D., Yang, W., Wickham, J., Sher, E., Kadavanich, A. and Alivisatos, A.P.: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).CrossRefGoogle ScholarPubMed
9Morales, A.M. and Lieber, C.M.: Laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).CrossRefGoogle ScholarPubMed
10Gudiksen, M.S. and Lieber, C.M.: Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc. 122, 8801 (2000).CrossRefGoogle Scholar
11Park, S.J., Kim, S., Lee, S., Khim, Z.G., Char, K. and Hyeon, T.: Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122, 8581 (2000).CrossRefGoogle Scholar
12Puntes, V.F., Krishnan, K.M. and Alivisatos, A.P.: Colloidal nanocrystal shape and size control: The case of cobalt. Science 291, 2115 (2001).CrossRefGoogle ScholarPubMed
13Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E. and Yang, P.: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater . 13, 113 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
14Cao, M., Hu, C., Peng, G., Qi, Y. and Wang, E.: Selected-control synthesis of PbO2 and Pb3O4 single-crystalline nanorods. J. Am. Chem. Soc. 125, 4982 (2003).CrossRefGoogle ScholarPubMed
15Li, M., Schnablegger, H. and Mann, S.: Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393 (1999).CrossRefGoogle Scholar
16Limmer, S.J., Seraji, S., Forbess, M.J., Wu, Y., Chou, T.P., Nguyen, C. and Cao, G.: Electrophoretic growth of lead zirconate titanate nanorods. Adv. Mater . 13, 1269 (2001).3.0.CO;2-S>CrossRefGoogle Scholar
17Urban, J.J., Yun, W.S., Gu, Q. and Park, H.: Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. J. Am. Chem. Soc. 124, 1186 (2002).CrossRefGoogle ScholarPubMed
18Nelson, J.A. and Wagner, M.J.: Synthesis of sodium tantalate nanorods by alkalide reduction. J. Am. Chem. Soc. 125, 332 (2003).CrossRefGoogle ScholarPubMed
19Yu, S.H., Antonietti, M., Cölfen, H. and Giersig, M.: Synthesis of very thin 1D and 2D CdWO4 nanoparticles with improved fluorescence behavior by polymer-controlled crystallization. Angew. Chem. Int. Ed. Engl. 41, 2356 (2002).3.0.CO;2-U>CrossRefGoogle ScholarPubMed
20Kwan, S., Kim, F., Akana, J., and Yang, P.: Synthesis and assembly of BaWO4 nanorods. Chem. Comm. 447 (2001).Google Scholar
21Riwotzki, K., Meyssamy, H., Kornowski, A. and Haase, M.: Liquidphase synthesis of doped nanoparticles: Colloids of luminescing LaPO4:Eu and CePO4:Tb particles with a narrow particle size distribution. J. Phys. Chem. B 104, 2824 (2000).CrossRefGoogle Scholar
22Heer, S., Lehmann, O., Haase, M. and Güdel, H.U.: Blue, green, and red upconversion emission from lanthanide-doped LuPo4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed. Engl. 42, 3179 (2003).CrossRefGoogle Scholar
23Schuetz, P. and Caruso, F.: Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles. Chem. Mater. 14, 4509 (2002).CrossRefGoogle Scholar
24Riwotzki, K., Meyssamy, H., Schnablegger, H., Kornowski, A. and Haase, M.: Liquid-phase synthesis of colloids and redispersible powders of strongly lumenscing LaPO4:Ce,Tb nanocrystals. Angew. Chem. Int. Ed. Engl. 40, 573 (2001).3.0.CO;2-0>CrossRefGoogle ScholarPubMed
25Lehmann, O., Meyssamy, H., Kompe, K., Schnablegger, H. and Haase, M.: Synthesis, growth, and Er3+ luminescence of lanthanide phosphate nanoparticles. J. Phys. Chem. B . 107, 7449 (2003).CrossRefGoogle Scholar
26Zhang, Y.W., Yan, Z.G., You, L.P., Si, R., and Yan, C.H.: General synthesis and characterization of monocrystalline lanthanide orthophosphate nanwires. Eur. J. Inorg. Chem. 4099 (2003)Google Scholar
27Zhang, Y. and Guan, H.: Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4 single-crystal nanowires. J. Cryst. Growth 256, 156 (2003).CrossRefGoogle Scholar
28Riwotzki, K., Meyssamy, H., Schnablegger, H., Kornowski, A. and Haase, M.: Liquid-phase synthesis of colloids and redispersible powders of strongly lumenscing LaPO4:Ce,Tb nanocrystals. Angew. Chem. Int. Ed. Engl. 40, 573 (2001).3.0.CO;2-0>CrossRefGoogle ScholarPubMed
29Meyssamy, H., Riwotzki, K., Kornowski, A., Naused, S. and Haase, M.: Wet-chemical synthesis of doped colloidal nanomaterials: particles and fibers of LaPO4:Eu, LaPO4:Ce,Tb. Adv. Mater . 11, 840 (1999).3.0.CO;2-2>CrossRefGoogle Scholar
30Hebbink, G.A., Stouwdam, J.W., Reinhoudt, D.N. and Veggel, F.C.J.M.: Lanthanide(III)-doped nanoparticles that emit in the near-infrared. Adv. Mater . 14, 1147 (2002).3.0.CO;2-0>CrossRefGoogle Scholar
31Yang, C., Awschalom, D.D. and Stucky, G.D.: Growth of CdS nanorods in nonionic amphiphilic triblock copolymer systems. Chem. Mater. 14, 1277 (2002).CrossRefGoogle Scholar
32Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B.F. and Stucky, G.D.: Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater . 10, 1380 (1998).3.0.CO;2-8>CrossRefGoogle Scholar