Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T05:24:52.991Z Has data issue: false hasContentIssue false

Surfactant-assisted reflux synthesis of PbS nanostructures and their properties

Published online by Cambridge University Press:  29 October 2012

Haifeng Zhou
Affiliation:
State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
Guangjun Zhou*
Affiliation:
State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
Qingqing Du
Affiliation:
State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
Huifang Bi
Affiliation:
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
Juan Zhou
Affiliation:
Center for Disease Prevention and Control of Jinan Military Command, Jinan 250014, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Uniform PbS nanostructures with varied morphology have been synthesized by a surfactant-assisted reflux route. ZnS and CdS layers were successfully coated onto PbS nanocrystals by encapsulation or epitaxial growth. The nanocrystals were characterized by x-ray diffraction, (high-resolution) transmission electron microscopy, selected area electron diffraction, and scanning electron microscopy. The truncated cubic nanostructures displayed a symmetric emission band at about 860 nm. Diffuse reflectance infrared (IR) spectroscopy was measured to estimate the band gap. High temperature and high frequency measurements of impedance and permittivity taught that the samples were stable and showed collateral evidence of the existence of epitaxial layers. Measurements illustrate that the luminescent properties of semiconductor PbS nanostructures are closely related to their surface nature, and encapsulation can affect their electrical properties and photoluminescence performance greatly. The study may prove useful in developing high frequency IR sensors and light signal amplification devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Machol, J.L., Wise, F.W., Patel, R.C., and Tanner, D.B.: Vibronic quantum beats in PbS microcrystallites. Phys. Rev. B: Condens. Matter 48, 2819 (1993).CrossRefGoogle ScholarPubMed
Kang, I. and Wise, F.W.: Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B: Opt. Phys. 14, 1632 (1997).CrossRefGoogle Scholar
Luther, J.M., Gao, J., Lloyd, M.T., Semonin, O.E., Beard, M.C., and Nozik, A.J.: The influence of hydrazine hydrate on the photoconductivity of PbS thin film. Adv. Mater. 22, 3704 (2010).CrossRefGoogle Scholar
Wadia, C., Aalivisatos, A.P., and Kammen, D.M.: Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072 (2009).CrossRefGoogle ScholarPubMed
Ghamsari, M.S., Araghi, M.K., and Farahani, S.J.: The influence of hydrazine hydrate on the photoconductivity of PbS thin film. Mater. Sci. Eng., B 133, 113 (2006).CrossRefGoogle Scholar
Raniero, L., Ferreira, C.L., Cruz, L.R., Pinto, A.L., and Alves, R.M.P.: Photoconductivity activation in PbS thin films grown at room temperature by chemical bath deposition. Physica B 405, 1283 (2010).CrossRefGoogle Scholar
Larramendi, E.M., Calzadillaa, O., Gonzalez-Arias, A., Hernandeza, E., and Ruiz-Garcia, J.: Effect of surface structure on photosensitivity in chemically deposited PbS thin films. Thin Solid Films 389, 301 (2001).CrossRefGoogle Scholar
Theocharous, E.: Absolute linearity measurements on a PbS detector in the infrared. Appl. Opt. 45, 2381 (2006).CrossRefGoogle ScholarPubMed
Werle, P., Slemr, F., Maurer, K., Kormann, R., Mücke, R., and Jänker, B.: Near- and mid-infrared laser-optical sensors for gas analysis. Opt. Lasers Eng. 37, 101 (2002).CrossRefGoogle Scholar
Rogach, A.L., Eychmüller, A., Hickey, S.G., and Kershaw, S.V.: Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 3, 536 (2007).CrossRefGoogle ScholarPubMed
Neo, M.S., Venkatram, N., Li, G.S., Chin, W.S., and Wei, J.: Size-dependent optical nonlinearities and scattering properties of PbS nanoparticles. J. Phys. Chem. C 113, 19055 (2009).CrossRefGoogle Scholar
Johnsen, S., He, J., Androulakis, J., Dravid, V.P., Todorov, I., Chung, D.Y., and Kanatzidis, M.G.: Nanostructures boost the thermoelectric performance of PbS. J. Am. Chem. Soc. 133, 3460 (2011).CrossRefGoogle ScholarPubMed
Hines, M.A. and Scholes, G.D.: Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15, 1844 (2003).CrossRefGoogle Scholar
Neo, M.S., Venkatram, N., Li, G.S., Chin, W.S., and Wei, J.: Synthesis of PbS/CdS core-shell QDs and their nonlinear optical properties. J. Phys. Chem. C 114, 18037 (2010).CrossRefGoogle Scholar
Paul, G.S. and Agarwal, P.: Structural, optical and thermal studies on PbS nanocubes. Phys. Status Solidi C 7, 905 (2010).CrossRefGoogle Scholar
Souici, A.H., Keghouche, N., Delaire, J.A., Remita, H., Etcheberry, A., and Mostafavi, M.: Structural and optical properties of PbS nanoparticles synthesized by the radiolytic method. J. Phys. Chem. C 113, 8050 (2009).CrossRefGoogle Scholar
Kumar, A. and Jakhmola, A.: RNA-mediated fluorescent Q-PbS nanoparticles. Langmuir 23, 2915 (2007).CrossRefGoogle ScholarPubMed
Yu, D., Chen, Y., Li, B., and Chen, X.: Nanocubes of PbS with visible luminescence synthesized by sulfonated polymer as stabilizer and modifier at room-temperature. Mater. Lett. 63, 2317 (2009).CrossRefGoogle Scholar
Acharya, S., Gautam, U.K., Sasaki, T., Bando, Y., Golan, Y., and Ariga, K.: Ultra narrow PbS nanorods with intense fluorescence. J. Am. Chem. Soc. 130, 4594 (2008).CrossRefGoogle ScholarPubMed
Hyun, B.R., Bartnik, A.C., Sun, L., Hanrath, T., and Wise, F.W.: Control of electron transfer from lead-salt nanocrystals to TiO2. Nano Lett. 11, 2126 (2011).CrossRefGoogle ScholarPubMed
Patel, A.A., Wu, F., Zhang, J.Z., Torres-Martinez, C.L., Mehra, R.K., Yang, Y., and Risbud, S.H.: Synthesis, optical spectroscopy and ultrafast electron dynamics of PbS nanoparticles with different surface capping. J. Phys. Chem. B 104, 11598 (2000).CrossRefGoogle Scholar
Wise, F.W.: Lead salt quantum dots: The limit of strong quantum confinement. Acc. Chem. Res. 33, 773 (2000).CrossRefGoogle ScholarPubMed
Clark, S.W., Harbold, J.M., and Wise, F.W.: Resonant energy transfer in PbS quantum dots. J. Phys. Chem. C 111, 7302 (2007).CrossRefGoogle Scholar
Pei, Y.L. and Liu, Y.: Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS. J. Alloys Compd. 514, 40 (2012).CrossRefGoogle Scholar
Wang, S.F., Gu, F., and Lu, M.K.: Solution-phase synthesis of spherical zinc sulfide nanostructures. Langmuir 22, 398 (2006).CrossRefGoogle Scholar
Zhou, G., Lu, M., Xiu, Z., Wang, S., Zhang, H., Zhou, Y., and Wang, S.: Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process. J. Phys. Chem. B 110, 6543 (2006).CrossRefGoogle ScholarPubMed
Mi, Y.H., Zhang, X.B., Ji, Z.G., Zhu, H.Y., Zhou, S.M., and Ni, H.L.: Controllable synthesis and formation mechanism of spherical, cubic and hollow cubic PbS nanocrystals. Chin. J. Inorg. Chem. 25, 1563 (2009).Google Scholar
Thongtema, T., Kaowphong, S., and Thongtem, S.: Biomolecule and surfactant-assisted hydrothermal synthesis of PbS crystals. Ceram. Int. 34, 1691 (2008).CrossRefGoogle Scholar
Jiao, Y.C., Gao, X.Y., Lu, J.X., Chen, Y.S., Zhou, J.P., and Li, X.L.: A novel method for PbS quantum dot synthesis. Mater. Lett. 72, 116 (2012).CrossRefGoogle Scholar
Rajesh, K., Mukundan, P., Pillai, P.K., Nair, V.R., and Warrier, K.G.K.: High-surface-area nanocrystalline cerium phosphate through aqueous sol-gel route. Chem. Mater. 16, 2700 (2004).CrossRefGoogle Scholar
Lange’s Handbook of Chemistry, edited by Dean, J.A., 15th ed. (McGraw Hill, New York, NY), pp. 767.Google Scholar
Lide, D.R.: CRC Handbook of Chemistry and Physics, 90th ed. (CRC Press, Boca Raton, FL, 2010), pp. 8120.Google Scholar
Li, J.J., Wang, Y.A., Guo, W., Keay, J.C., Mishima, T.D., Johnson, M.B., and Peng, X.: Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567 (2003).CrossRefGoogle ScholarPubMed
Wang, J., Long, Y., Zhang, Y., Zhong, X., and Zhu, L.: Preparation of highly luminescent CdTe/CdS core/shell quantum dots. ChemPhysChem 10, 680 (2009).CrossRefGoogle ScholarPubMed
Waynant, R.W., Ilev, I.K., and Gannot, I.: Mid-infrared laser applications in medicine and biology. Philos. Trans. R. Soc. London, Ser. A 359, 635 (2001).CrossRefGoogle Scholar
Cheng, H., Huang, B., Dai, Y., Qin, X., Zhang, X., Wang, Z., and Jiang, M.: Visible-light photocatalytic activity of the metastable Bi20TiO32 synthesized by a high-temperature quenching method. J. Solid State Chem. 182, 2274 (2009).CrossRefGoogle Scholar
Kumar, S., Sharma, T.P., Zulfequar, M., and Husain, M.: Characterization of vacuum evaporated PbS thin films. Physica B 325, 8 (2003).CrossRefGoogle Scholar