Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T12:09:22.695Z Has data issue: false hasContentIssue false

Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates

Published online by Cambridge University Press:  26 July 2012

T. Y. Tsui
Affiliation:
Department of Materials Science, Rice University, 6100 Main Street; MS 321, Houston, Texas 77251-1892
G. M. Pharr
Affiliation:
Department of Materials Science, Rice University, 6100 Main Street; MS 321, Houston, Texas 77251-1892
Get access

Extract

Substrate effects on the measurement of thin film mechanical properties by nanoindentation methods have been studied experimentally using a model soft film on hard substrate system: aluminum on glass. The hardness and elastic modulus of aluminum films with thicknesses of 240, 650, and 1700 nm sputter-deposited on glass were systematically characterized as a function of indenter penetration depth using standard nanoindentation methods. Scanning electron and atomic force microscopy of the hardness impressions revealed that indentation pileup in the aluminum is significantly enhanced by the substrate. The substrate also affects the form of the unloading curve in a manner that has important implications for nanoindentation data analysis procedures. Because of these effects, nanoindentation measurement techniques overestimate the film hardness and elastic modulus by as much as 100% and 50%, respectively, depending on the indentation depth. The largest errors occur at depths approximately equal to the film thickness.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tsui, T.Y., Oliver, W. C., and Pharr, G.M., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S. P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 207.Google Scholar
2.Oliver, W. C., McHargue, C. J., and Zinkle, S. J., Thin Sol. Films 153, 185 (1987).CrossRefGoogle Scholar
3.Oliver, W. C. and McHargue, C. J., Thin Sol. Films 161, 117 (1988).CrossRefGoogle Scholar
4.Oliver, W. C., Hutchings, R., and Pethica, J. B., in Microindentation Techniques in Materials Science and Engineering, edited by Blau, P. J. and Lawn, B. R. (American Society for Testing and Materials, Philadelphia, PA, 1986), pp. 90108.Google Scholar
5.Gorbatkin, S. M., Rhodes, R. L., Tsui, T. Y., and Oliver, W.C., Appl. Phys. Lett. 65, 2672 (1994).CrossRefGoogle Scholar
6.Fabes, B. D. and Oliver, W. C., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M., Oliver, W. C., Pharr, G. M., and Brotzen, F. R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990), p. 127.Google Scholar
7.Doerner, M. F., Gardner, D. S., and Nix, W. D., J. Mater. Res. 1, 845 (1986).CrossRefGoogle Scholar
8.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
9.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
10.Pharr, G. M. and Oliver, W. C., MRS Bulletin 17, 28 (1992).CrossRefGoogle Scholar
11.Loubet, J. L., Georges, J. M., Marchesini, O., and Meille, G., J. Tribology 106, 43 (1984).CrossRefGoogle Scholar
12.Pethica, J. B., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
13.Bhattacharya, A. K. and Nix, W. D., Int. J. Solids Struct. 24, 1287 (1988).CrossRefGoogle Scholar
14.Laursen, T. A. and Simo, J. C., J. Mater. Res. 7, 618 (1992).CrossRefGoogle Scholar
15.Tsui, T. Y., Oliver, W. C., and Pharr, G. M., J. Mater. Res. 11, 752 (1996).CrossRefGoogle Scholar
16.Bolshakov, A., Oliver, W.C., and Pharr, G. M., J. Mater. Res. 11, 760 (1996).CrossRefGoogle Scholar
17.Bolshakov, A., Oliver, W. C., and Pharr, G. M., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S. P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 760.Google Scholar
18.Bolshakov, A. and Pharr, G. M., J. Mater. Res. 13, 1049 (1998).CrossRefGoogle Scholar
19.King, R. B., Int. J. Solids Struct. 23, 1657 (1987).CrossRefGoogle Scholar
20.Gao, H., Chiu, C-H., and Lee, J., Int. J. Solids Struct. 29, 2471 (1992).Google Scholar
21.Stone, D., LaFontaine, W.R., Alexopoulos, P., Wu, T. W., and Li, C-Y., J. Mater. Res. 3, 141 (1988).CrossRefGoogle Scholar
22.Tsui, T.Y., Ph.D. Dissertation, Rice University, July 1996.Google Scholar
23.Tabor, D., The Hardness of Metals (Oxford University Press, London, 1951).Google Scholar
24.Bower, A. F., Fleck, N., Needleman, A., and Ogbonna, N., Proc. R. Soc. Lond. A 441, 97 (1993).Google Scholar
25.Pharr, G. M., Bolshakov, A., Tsui, T. Y., and Hay, J. C., Mater. Res. Soc. Symp. Proc., in press.Google Scholar