Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T02:58:26.876Z Has data issue: false hasContentIssue false

Substitution Effect of Ta5+ by Nb5+ on Photocatalytic, Photophysical, and Structural Properties of BiTa1–xNbxO4(0 ≦ x≦ 1.0)

Published online by Cambridge University Press:  31 January 2011

Zhigang Zou*
Affiliation:
Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1–1-1 Higashi, Tsukuba, Ibaraki 305–8563, Japan
Hironori Arakawa
Affiliation:
Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1–1-1 Higashi, Tsukuba, Ibaraki 305–8563, Japan
Jinhua Ye
Affiliation:
Materials Engineering Laboratory (MEL), National Institute for Materials Science (NIMS), 1–2-1 Sengen, Tsukuba, Ibaraki 305–0047, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Substitution effects of Ta5+ by Nb5+ in BiTa1−xNbxO4(0 ≦ x ≧ 1.0) on photocatalytic, photophysical, and structural properties were investigated. The powder x-ray diffraction and Rietveld structural refinement showed that the structure of BiTa1−xNbxO4 at R = Nb/Bi = 0.0 and 0.5 is a triclinic system with space group P1. However, the structure at R = 0.2, 0.8, and 1.0 is an orthorhombic system with space group Pnna. Ultraviolet-visible diffuse reflectance spectroscopy measurement revealed that the band gap of orthorhombic samples is narrower than that of triclinic compounds. The H2 evolution was obtained from an aqueous CH3OH/H2O solution and pure H2O with BiTa1−xNbxO4 under ultraviolet irradiation. The orthorhombic samples exhibit much higher activity than that of triclinic compounds. The orthorhombic compound at R = 0.2 showed the highest activity, which is higher than that of the well-known TiO2 photocatalyst.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Aurivellius, B., Ark. Kem. 3, 153 (1951).Google Scholar
2.Roth, R.S. and Waring, J.L, Am. Mineral. 48, 1348 (1963).Google Scholar
3.Keve, E.T. and Skapski, A.C., Chem. Commun. 281 (1967).Google Scholar
4.Keve, E.T. and Skapski, A.C., J. Solid State Chem. 8, 159 (1973).CrossRefGoogle Scholar
5.Bernard, D., Pannetier, J., and Lucas, J., Ferroelectrics . 21, 429 (1978).CrossRefGoogle Scholar
6.Golovshchikove, G.I., Isupov, V.A., Tutov, A.G., Nikove, A.G., Myl, I.E., Nikitina, P.A., and Tulinova, O.I., Sov. Phys. Solid State. 14, 2539 (1973).Google Scholar
7.Zou, Z. and Ye, J., J. Alloys and Compounds. 292, 72 (1999).CrossRefGoogle Scholar
8.Brixner, L.H. and Chen, H.Y., Mat. Res. Bull. 15, 607 (1980).Google Scholar
9.Zou, Z., Ye, J., and Arakawa, H., Chem. Phys. Lett. 332, 271 (2000).Google Scholar
10.Zou, Z., Ye, J., and Arakawa, H., Chem. Phys. Lett. 333, 57 (2001).CrossRefGoogle Scholar
11.Zou, Z., Ye, J., and Arakawa, H., Catal. Lett. 68, 235 (2000).Google Scholar
12.Zou, Z., Ye, J., and Arakawa, H., J. Mole. Catal. A: Chem. 168, 289 (2001).Google Scholar
13.Zou, Z., Ye, J., and Arakawa, H., Chem. Mater. 13, 1765 (2001).CrossRefGoogle Scholar
14.Zou, Z., Ye, J., and Arakawa, H., Mater. Res. Bull. 36, 1185 (2001).Google Scholar
15.Honda, K. and Fujishima, A., Nature. 238, 37 (1972).Google Scholar
16.Zou, Z., Ye, J., Oka, K., and Nishihara, Y., Phys. Rev. Lett. 80, 1074 (1998).CrossRefGoogle Scholar
17.Izumi, F., J. Crystallogr. Assoc. Jpn. 27, 23 (1985).Google Scholar
18.Kim, H.G., Hwang, D.W., Kim, J., Kim, Y.G., and Lee, J.. Chem. Commun. 1077 (1999).Google Scholar
19.Zou, Z., Ye, J., and Arakawa, H., J. Mater. Res. 16, 35 (2001).CrossRefGoogle Scholar
20.Amy, L.L., Guangqan, L., John, T., and Yates, J.T. Jr.Chem. Rev. 95, 735 (1995).Google Scholar
21.Lawless, D., Serpone, N., and Meisel, D., J. Phys. Chem. 95, 5166 (1991).CrossRefGoogle Scholar
22.Goldstein, S., Czapski, G., and Rabani, J., J. Phys. Chem. 98, 6586 (1994).Google Scholar
23.Yanagisawa, Y. and Ota, Y.. Surf. Sci., 254, L433 (1991).Google Scholar
24.Lu, G., Amy, L.L., and Yates, J.T. Jr., J. Chem. Phys. 102, 3005 (1995).CrossRefGoogle Scholar
25.Amy, L.L., Guangqan, L., John, T., and Yates, J.T. Jr., Chem. Rev. 95, 435 (1995).Google Scholar
26.Ishibashi, K.I., Fijishima, L., Watanaba, T., and Hashimoto, K., J. Phys. Chem. B. 104, 4934 (2000).CrossRefGoogle Scholar
27.Qadri, S.B., Kim, H., and Khan, H.R., J. Mater. Res. 15, 21 (2000).CrossRefGoogle Scholar
28.Monique, W., Wilma, M., and George, B., J. Mater. Chem. 5, 981 (1995).Google Scholar
29.Scaife, D.E., Sol. Energy. 25, 41 (1980).CrossRefGoogle Scholar
30.Kudo, A., Kato, H., and Nakagawa, S., J. Phys. Chem. B. 104, 571 (2000).CrossRefGoogle Scholar
31.Xu, J. and Greenblatt, M., J. Solid State Chem. 121, 273 (1996).CrossRefGoogle Scholar
32.Xu, L., Emge, T., Ramanujachary, K.V., Hohn, P., and Greenblatt, M., J. Solid State Chem. 125, 192 (1996).CrossRefGoogle Scholar
33.Alig, R.C. and Bloom, S.W., Phys. Rev. B. 22, 5565 (1980).Google Scholar