Published online by Cambridge University Press: 02 May 2017
To determine the spray forming process parameters of 7075/Al–Si bimetallic gradient composite plate with two gas atomizers, a calculation model of the plate has been established by using the finite element software ANSYS. The effects of different motion trajectory, advance speed, swing cycle and spray center distance on shape, and silicon distribution of deposited plate have been simulated by the APDL programming language. The results show that a smooth and uniform surface is obtained when motion trajectory is in a regular jaggies mode. The deposited plate varies from platform to stepped shape with a center distance increasing from 20 mm to 50 mm; meanwhile, the width of the transition zone decreases gradually. As the period increases to 8 s, the silicon distribution of each layer presents a jagged fluctuation. Both the thickness of the deposited plate and the width of the transition zone decrease as the advance speed increases, except the silicon distribution. Finally, the modeling and simulation of the co-spray formed 7075/Al–Si bimetallic gradient composite plate are validated by experimental investigations and the simulation results are in good agreement with the actual results.
Contributing Editor: Jürgen Eckert
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.