Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:41:20.634Z Has data issue: false hasContentIssue false

Structure-property behavior during aging of sol-gel-derived silica modified with Si–H and Si–CH3 groups

Published online by Cambridge University Press:  31 January 2011

Vincenzo M. Sglavo
Affiliation:
Dipartimento di Ingeneria dei Materiali, Università di Trento, Via Mesiano 77, I-38050 Trento, Italy
Sandra Diré
Affiliation:
Dipartimento di Ingeneria dei Materiali, Università di Trento, Via Mesiano 77, I-38050 Trento, Italy
Maurizio Ferrari
Affiliation:
CNR–CeFSA, Centro Fisica Stati Aggregati, Via Sommarive 14, I-38050 Povo (TN), Italy
Get access

Abstract

Unsupported films and thin rods were prepared by the sol-gel method from solutions of triethoxysilane and methyldiethoxysilane. Measurements of elastic modulus, density, glass transition temperature, and refractive index were performed at different aging times. Results showed a large increase of the elastic modulus with aging time, which was related to the progressive condensation taking place in the xerogel network, as shown by solid-state nuclear magnetic resonance (NMR). The stiffness increase was shown to correspond to higher glass transition temperature and larger density and refractive index. Different increasing rates of the physical and mechanical characteristics were observed for films and rods during aging. This behavior was related to the different loss rate of the pore liquid, which affects the network evolution in the wet gel.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schmidt, H. and Seiferling, B., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 739.Google Scholar
2.Wen, J. and Wilkes, G. L., Chem. Mater. 8, 1667 (1996).CrossRefGoogle Scholar
3.Judenstein, P. and Sanchez, C., J. Mater. Chem. 6, 511 (1996).CrossRefGoogle Scholar
4.Schmidt, H. K., Oliveira, P. W., and Krug, H., in Better Ceramics Through Chemistry VII—Organic/Inorganic Hybrid Materials, edited by Coltrain, B. K., Sanchez, C., Schaefer, D. W., and Wilkes, G. L. (Mater. Res. Soc. Symp. Proc. 435, Pittsburgh, PA, 1996), p. 13.Google Scholar
5.Wilkes, G. L., Brennan, A. B., Huang, H., Rodrigues, D., and Wang, B., in Polymer Based Molecular Composites, edited by Schaefer, D. W. and Mark, J. E. (Mater. Res. Soc. Symp. Proc. 171, Pittsburgh, PA, 1990), p. 15.Google Scholar
6.Diré, S., Pagani, E., Babonneau, F., Ceccato, R., and Carturan, G., J. Mater. Chem. 7, 67 (1997).CrossRefGoogle Scholar
7.Babonneau, F., Bois, L., Maquet, J., and Livage, J., in Eurogel '91, edited by Vilminot, S., Nass, R., and Schmidt, H. (Elsevier Science Publishing, The Netherlands, 1992), p. 319.CrossRefGoogle Scholar
8.Diré, S., Babonneau, F., Sanchez, C., and Livage, J., J. Mater. Chem. 2, 239 (1992).CrossRefGoogle Scholar
9.Della Volpe, C., Diré, S., and Pagani, E., J. Non-Cryst. Solids 209, 51 (1997).CrossRefGoogle Scholar
10.Mackenzie, J. D., Huang, Q., and Iwamoto, T., J. Sol-Gel Sci. Technol. 7, 151 (1996).CrossRefGoogle Scholar
11.Schmidt, H., J. Non-Cryst. Solids 73, 681 (1985).CrossRefGoogle Scholar
12.Lacan, P., Le Gall, P., Rigola, I., Lurin, C., Wettling, D., Guizard, C., and Cot, L., in Sol-Gel Optics II, edited by Mackenzie, J. D. (SPIE, Washington, DC, 1992), p. 464.CrossRefGoogle Scholar
13.Okui, T., Saito, Y., Okubo, T., and Sadakata, M., J. Sol-Gel Sci. Technol. 5, 127 (1995).CrossRefGoogle Scholar
14.Guizard, C. and Lacan, P., in Proc. 1st European Workshop on Hybrid Organic Inorganic Materials, edited by Sanchez, C. and Ribot, F. (CNRS, Paris, 1993), p. 153.Google Scholar
15.Diré, S., Pagani, E., Ceccato, R., and Carturan, G., J. Mater. Chem. 7, 919 (1997).CrossRefGoogle Scholar
16.Bois, L., Maquet, J., Babonneau, F., Mutin, H., and Bahloul, D., Chem. Mater. 6, 796 (1994).CrossRefGoogle Scholar
17.Diré, S., Campostrini, R., and Ceccato, R., Chem. Mater. 10, 268 (1998).CrossRefGoogle Scholar
18.Zhang, H. and Pantano, C. G., J. Am. Ceram. Soc. 73, 958 (1990).CrossRefGoogle Scholar
19.Babonneau, F., Thorne, K., and Mackenzie, J. D., Chem. Mater. 1, 554 (1989).CrossRefGoogle Scholar
20.Sorarù, G.D., D'Andrea, G., Campostrini, R., Babonneau, F., and Mariotto, G., J. Am. Ceram. Soc. 78, 379 (1995).CrossRefGoogle Scholar
21.Diré, S. and Babonneau, F., J. Sol-Gel Sci. Technol. 2, 139 (1994).CrossRefGoogle Scholar
22.Brinker, C.J. and Scherer, G. W., Sol-Gel Science (Academic Press, San Diego, CA, 1990), Chaps. 6 and 8.Google Scholar
23.Sglavo, V.M. and Diré, S., J. Sol-Gel Sci. Technol. 2, 143 (1994).CrossRefGoogle Scholar
24.Rauch, H.W. Sr, Sutton, W. H., and McCreight, L. R., Ceramic Fibers and Fibrous Composite Materials (Academic Press, London, 1968), pp. 3133.Google Scholar
25.Sorarù, G.D., D'Andrea, G., Campostrini, R., and Babonneau, F., J. Mater. Chem. 5, 13631374 (1995).CrossRefGoogle Scholar
26.Vega, A.J. and Scherer, G. W., J. Non-Cryst. Solids 111, 153 (1989).CrossRefGoogle Scholar
27.Haereid, S., Nilsen, E., Ranum, V., and Einarsrud, M. A., J. Sol-Gel Sci. Technol. 8, 153 (1997).Google Scholar
28.Einarsrud, M. A. and Haereid, S., J. Sol-Gel Sci. Technol. 2, 903 (1994).CrossRefGoogle Scholar
29.Davis, P.J., Brinker, C.J., and Smith, D. M., J. Non-Cryst. Solids 142, 189 (1992).CrossRefGoogle Scholar