Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T17:23:29.276Z Has data issue: false hasContentIssue false

Structural Variants in Attempted Heteroepitaxial Growth of B12As2 on 6H–SiC (0001)

Published online by Cambridge University Press:  03 March 2011

J.R. Michael
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
T.L. Aselage
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
David Emin
Affiliation:
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131
P.G. Kotula
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

Boron sub-arsenide, B12As2, is based on twelve-atom clusters of boron atoms and two-atom As–As chains. By contrast, SiC is a tetrahedrally bonded covalent semiconductor. Despite these fundamental differences, the basal plane hexagonal lattice constant of boron sub-arsenide is twice that of SiC. This coincidence suggests the possibility of heteroepitaxial growth of boron sub-arsenide films on properly aligned SiC. However, there are a variety of incommensurate alignments by which heteroepitaxial growth of B12As2 on (0001) 6H–SiC can occur. In this study, we first used geometrical crystallographic considerations to describe the possible arrangements of B12As2 on (0001) 6H–SiC. We identified four translational and two rotational variants. We then analyzed electron backscattered diffraction and transmission electron microscopy images for evidence of distinct domains of such structural variants. Micron-scale regions with each of the two possible rotational alignments of B12As2 icosahedra with the SiC surface were seen. On a finer length scale (100–300 nm) within these regions, boron-rich boundaries were found, consistent with those between pairs of the four equivalent translational variants associated with a two-to-one lattice match. Boron-carbide reaction layers were also observed at interfaces between SiC and B12As2.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Emin, D.: Icosahedral boron-rich solids. Phys. Today 40, 55 (1987).CrossRefGoogle Scholar
2Lipscomb, W.N.: Boron Hydrides (W.A. Benjamin, New York, 1963).Google Scholar
3 Boron and Refractory Borides, edited by Matkovich, V.I. (Springer-Verlag, New York, 1977).Google Scholar
4Emin, D., Aselage, T., Beckel, C.L., Howard, I.A. and Wood, C.: Boron-Rich Solids, edited by Emin, D., Aselage, T., Beckel, C.L., Howard, I.A., and Wood, C., AIP Conf. Proc., Vol. 140 (American Institute of Physics, New York, 1986).Google Scholar
5Carrard, M., Emin, D. and Zuppiroli, L.: Defect clustering and self-healing of electron-irradiated boron-rich solids. Phys. Rev. B 51, 11270 (1995).CrossRefGoogle ScholarPubMed
6Slack, G.A., McNelly, T.F. and Taft, E.A.: Melt growth and properties of B6P crystals. J. Phys. Chem. Solids 44, 1009 (1983).CrossRefGoogle Scholar
7Emin, D.: Bonding and doping of simple icosahedral-boride semiconductors. J. Solid State Chem. 177, 1619 (2004).CrossRefGoogle Scholar
8Aselage, T.L. and Emin, D. Beta Cell Device Using Icosahedral Boride Compounds, U.S. Patent 6 No. 479 919 (Nov. 12, 2002).Google Scholar
9Perri, J.A., Placa, S. La and Post, B.: New group III—group V compounds—BP and BAs. Acta Crystall. 11, 310 (1958).CrossRefGoogle Scholar
10Williams, F.V. and Ruehrwein, R.A.: The preparation and properties of boron phosphides and arsenides. J. Am. Chem. Soc. 82, 1330 (1960).CrossRefGoogle Scholar
11Greene, R.A. Burmeister Jr.and P.E.: Synthesis and growth of B6P. Trans. Met. Soc. AIME 239, 408 (1967).Google Scholar
12Chu, T.L., Jackson, J.M., Hyslop, A.E. and Chu, S.C.: Crystals and epitaxial layers of boron phosphide. J. Appl. Phys. 42, 420 (1971).CrossRefGoogle Scholar
13Takigawa, M., Hirayama, M. and Shohno, K.: Hetero-epitaxial growth of lower boron phosphide on silicon substrates using PH3–B2H6–H2 system. Jpn. J. Appl. Phys. 12, 1504 (1973).CrossRefGoogle Scholar
14Hirayama, M. and Shohno, K.: Hetero-epitaxial growth of lower boron arsenide on Si substrate using AsH3–B2H6–H2 system. Jpn. J. Appl. Phys. 12, 1960 (1973).CrossRefGoogle Scholar
15Takenaka, T. and Shohno, K.: Double-layer epitaxial growth of Si and B13P2 on Si substrates and some electrical properties of Si layers. Jpn. J. Appl. Phys. 13, 1211 (1974).CrossRefGoogle Scholar
16Amberger, V.E. and Rauh, P.A.: Structure of boron-rich phosphides, Acta Crystall. B30, 2549 (1974).CrossRefGoogle Scholar
17Chu, T.L. and Hyslop, A.E.: Preparation and properties of boron arsenide films. J. Electrochem. Soc. 121, 412 (1974).CrossRefGoogle Scholar
18Shohno, K., Takigawa, M. and Nakada, T.: Epitaxial growth of BP compounds on Si substrates using the B2H6–PH3–H2 system. J. Cryst. Growth 24/25, 193 (1974).CrossRefGoogle Scholar
19Correia, L.A., van Oort, R.C. and van der Put, P.J.: Chemical vapor deposition of boron subarsenide using halide reactants. React. Solids 2, 203 (1986).CrossRefGoogle Scholar
20Aselage, T.L.: Preparation of boron-rich refractory semiconductors, in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T.L., and Wood, C. (Mater. Res. Soc Symp. Proc. 97, Pittsburgh, PA, 1987), p. 101.Google Scholar
21Kumashiro, Y., Yoshizawa, H. and Yokoyama, T.: Epitaxial growth of rhombohedral boron phosphide single crystal films by chemical vapor deposition. J. Solid State Chem. 133, 104 (1997).CrossRefGoogle Scholar
22Wang, R.H., Zubia, D., O’Neil, T., Emin, D., Aselage, T., Zhang, W. and Hersee, S.D.: Chemical vapor deposition of B12As2 thin films on 6H–SiC. J. Electron. Mater. 29, 1304 (2000).CrossRefGoogle Scholar
23Nagarajan, R., Edgar, J.H., Pomeroy, J., Kuball, M. and Aselage, T.: Investigation of thin film growth of B12As2 by chemical vapor deposition, in New Applications for Wide-Bandgap Semiconductors, edited by Chyi, J.J., Pearton, S.J., Han, J., Baca, A.G., Chyi, J-I., and Chang, W.H. (Mater. Res. Soc. Symp. Proc. 764, Warrendale, PA 2003), p. 283.Google Scholar
24Vetter, W.A., Nagarajan, R., Edgar, J.H. and Dudley, M.: Double-positioning twinning in icosahedral B12As2 thin films grown by chemical vapor deposition. Mater. Lett. 581331 (2004).CrossRefGoogle Scholar
25Nagarajan, R., Xu, Z., Edgar, J.H., Baig, F., Chaudhuri, J., Rek, Z., Payzant, E.A., Meyer, H.M., Pomeroy, J. and Kuball, M.: Crystal growth of B12As2 on SiC substrate by CVD method. J. Crystal Growth 273, 431 (2005).CrossRefGoogle Scholar
26Prior, D.J., Trimby, P.W., Weber, U.D. and Dingley, D.J.: Orientation contrast imaging of microstructures in rocks using forescatter detectors in the scanning electron microscope. Mineral. Mag. 60, 859 (1996).CrossRefGoogle Scholar
27Jacobs, M.H. and Stowell, M.J.: Moire patterns and coherent double-positioning boundaries in {111} epitaxial gold films. Philos. Mag. 11, 591 (1966).CrossRefGoogle Scholar
28Siegal, M.P., Saudia National Laboratories, 2003, private communication.Google Scholar
29Morosin, B., Mullendore, A.W., Emin, D. and Wood, C.: Rhombohedral crystal structure of compounds containing boron-rich icosahedra, in Boron-Rich Solids, edited by Emin, D., Aselage, T., Beckel, C.L., Howard, I.A., and Wood, C., AIP Conf. Proc., Vol. 140 (American Institute of Physics, New York, 1986), p. 70.CrossRefGoogle Scholar