Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T05:48:17.827Z Has data issue: false hasContentIssue false

Structural phase transition study of Ba2YCu3O6+x in air

Published online by Cambridge University Press:  31 January 2011

W. Wong-Ng
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards, Gaithersburg, Maryland 20899
L. P. Cook
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards, Gaithersburg, Maryland 20899
C. K. Chiang
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards, Gaithersburg, Maryland 20899
L. J. Swartzendruber
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards, Gaithersburg, Maryland 20899
L. H. Bennett
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards, Gaithersburg, Maryland 20899
J. Blendell
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards, Gaithersburg, Maryland 20899
D. Minor
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards, Gaithersburg, Maryland 20899
Get access

Abstract

A structural phase transition study of Ba2YCu3O6+x (x = 0 to 1) has been conducted on a series of 13 quenched samples. These samples were prepared from an orthorhombic material by annealing at temperatures from 400 to 1000 °C in air, followed by rapid quenching. All quenchings were performed by using a liquid-nitrogen-cooled copper cold well with a continuous flow of cooled helium gas. Various measurements including x-ray diffraction, thermogravimetric analysis, Meissner effect, and scanning electron microscopy were carried out in order to correlate the nature of the phase transition with erystallographic data, superconductivity, and annealing temperature. The phase transition from Ba2YCu3,O7 to Ba2YCu3O6 appears to involve two orthorhombic regions: region A with a <b ≈ c/3 below approximately 600 °C and region B with cell parameters of a < b < c/3 from & 600 to 708–720 °C. The transformation from orthorhombic to tetragonal takes place in the temperature range of 708–720 °C. This transition appears to be a second-order, order-disorder type.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jorgenson, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Segre, C. U., Zhang, K., and Kleefisch, M. S., Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
2Kwok, W. K., Crabtree, G. W., Umezawa, A., Veal, B. W., Jorgensen, J. D., Malik, S. K., Nowicki, L. J., Paulikas, A. P., and Nunez, L., “Electronic behavior of oxygen deficient YBa2Cu3O7-S” (to be published).Google Scholar
3Wong-Ng, W. and Cook, L. P., Adv. Ceram. Mater. 2(3B), 624 (1987).CrossRefGoogle Scholar
4Schuller, K., Hinks, G., Beno, M. A., Capone, D. W. II , Soderholm, L., Locquet, J. P., Bruynseraede, Y., Segre, C. U., and Zhang, K., Solid State Commun. 63, 385 (1987).CrossRefGoogle Scholar
5Gallagher, P. K., O'Bryan, H. M., Sunshine, S. A., and Murphy, D. W., Mater. Res. Bull. 22, 995 (1987).CrossRefGoogle Scholar
6Cook, L. P., Chiang, C. K., Wong-Ng, W., and Blendell, J. E., Adv. Ceram. Mater. 2(3B), 656 (1987).CrossRefGoogle Scholar
7Wong-Ng, W., McMurdie, H. F., Paretzkin, B., Zhang, Y., Davis, K. L., Hubbard, C. R., Dragoo, A. L., and Stewart, J. M., Powder Diff. 2(3), 191 (1987).CrossRefGoogle Scholar
8Wong-Ng, W., Roth, R. S., Swartzendruber, L. J., Bennet, L. H., Chiang, C. K., Beech, F., and Hubbard, C. R., Adv. Ceram. Mater. 2(3B), 565 (1987).CrossRefGoogle Scholar
9Deslattes, R. D. and Henins, A., Phys. Rev. Lett. 31, 972 (1973).CrossRefGoogle Scholar
10Synder, R. L., Hubbard, C. R., and Pyrros, N. C., “AUTO: A Real Time Diffractometer Control System Report,” NBSIR 81-2229, United States Department of Commerce (National Bureau of Standards, Gaithersburg, MD, 1981).CrossRefGoogle Scholar
11Hubbard, C. R., Robbins, C., and Wong-Ng, W., “Standard Reference Material 640b, Silicon Powder X-ray Diffraction Standard” (National Bureau of Standards, Gaithersburg, MD, 1987). Obtainable from the National Bureau of Standards, Office of Standard Reference Materials, Gaithersburg, MD 20899. Current price will be quoted on request.Google Scholar
12Hubbard, C. R., “Standard Reference Material 675, Fluorophlogopite Powder X-ray Diffraction Standard” (National Bureau of Standards, Gaithersburg, MD, 1987). To obtain, see procedure in Ref. 11.Google Scholar
13Wong-Ng, W. and Hubbard, C. R., Powder Diff. 2(4), 242 (1987).CrossRefGoogle Scholar
14McMurdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B., Wong-Ng, W., and Hubbard, C. R., Powder Diff. 1(1), 40 (1986).CrossRefGoogle Scholar
15Pyrros, N. P. and Hubbard, C. R., Adv. X-ray Anal. 26, 63 (1983).Google Scholar
16Appleman, D. E. and Evans, H. T. Jr , Report No. PB216188, United States Department of Commerce (National Technical Information Service, Springfield, VA, 1973).Google Scholar
17Certain commercial materials and equipment are identified in this article to specify the experimental procedure. In no instance does such identification imply recommendation or endorsement by the National Bureau of Standards or imply that the material and equipment identified are necessarily the best available for the purpose.Google Scholar
18Chiang, C. K., Cook, L. P., Chiang, S. S., Blendell, J. E., and Roth, R. S., Adv. Ceram. Mater. 2, 530 (1987).CrossRefGoogle Scholar
19Finnemore, D. K., Shelton, R. N., Clem, J. R., McCallum, R. W., Ku, H. D., McCarley, R. E., Chen, S. C., Klavins, P., and Kogan, V., Phys. Rev. B 35, 5319 (1987).CrossRefGoogle Scholar
20Cava, R. J., Batlogg, B., Chen, C. H., Rietman, E. A., Zahurak, S. M., and Werder, D., Nature 329, 423 (1987).CrossRefGoogle Scholar
21Khachaturyan, A. G., Semenovskaya, S. V., and Morris, J. W. Jr , Phys. Rev. Lett, (submitted for publication).Google Scholar
22Goldfarb, R. B., Clark, A. F., Braginski, A. I., and Panson, A. J., Cryogenics 27, 475 (1987).CrossRefGoogle Scholar
23Beech, F., Miraglia, A., Santoro, A., and Roth, R. S., Phys. Rev. B 35, 8778 (1987).CrossRefGoogle Scholar
24Miraglia, S., Beech, F., Santoro, A., Qui, D. Tran, Sunshine, S. A., and Murphy, D. W., Mater Res. Bull. 22, 1733 (1987).CrossRefGoogle Scholar