Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T09:22:27.906Z Has data issue: false hasContentIssue false

Structural, optical, and magnetic properties of Fe-doped In2O3 nanocubes

Published online by Cambridge University Press:  31 January 2011

Dewei Chu
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China; and Graduate School of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
Yu-Ping Zeng*
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Dongliang Jiang
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Zhongming Ren
Affiliation:
Department of Materials Science and Engineering, Shanghai University, Shanghai 200072, People’s Republic of China
Weili Ren
Affiliation:
Department of Materials Science and Engineering, Shanghai University, Shanghai 200072, People’s Republic of China
Junhu Wang
Affiliation:
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
Tao Zhang
Affiliation:
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Fe-doped In2O3 nanocubes were synthesized by a solvothermal method. The lattice constant a decreases linearly as Fe doping concentration increases, and Raman scattering measurement proves the incorporation of Fe ions into the In2O3 crystal lattice. Mössbauer spectra show the presence of mixed valence of Fe ions instead of Fe3O4, while the sample is superparamagnetic. The products with an average diameter of 80 nm have a single-crystalline phase and appear as a square shape. Magnetic measurements confirm the superparamagnetic properties of the nanocubes, and electron paramagnetic resonance studies indicate Fe ions occupy different sites in the In2O3 matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Molnar, S.V., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: A spin-based electronics vision for the future. Science 294, 1488 2001CrossRefGoogle ScholarPubMed
2Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 1998CrossRefGoogle ScholarPubMed
3Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 2000CrossRefGoogle ScholarPubMed
4Fukumura, T., Yamada, Y., Toyosaki, H., Hasegawa, T., Koinuma, H., Kawasaki, M.: Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics. Appl. Surf. Sci. 223, 62 2004CrossRefGoogle Scholar
5Gordon, R.G.: Criteria for choosing transparent conductors. MRS Bull. 25, 52 2000CrossRefGoogle Scholar
6Yoo, Y.K., Xue, Q., Lee, H-C., Cheng, S., Xiang, X-D., Dionne, G.F., Xu, S., He, J., Chu, Y.S., Preite, S.D., Lofland, S.E., Takeuchi, I.: Bulk synthesis and high-temperature ferromagnetism of (In1–xFex)2O3–σ with Cu co-doping. Appl. Phys. Lett. 86, 042506 2005CrossRefGoogle Scholar
7Peleckis, G., Wang, X.L., Dou, S.X.: Room-temperature ferromagnetism in Mn and Fe codoped In2O3. Appl. Phys. Lett. 88, 132507 2006CrossRefGoogle Scholar
8He, J., Xu, S., Yoo, Y.K., Xue, Q., Lee, H-C., Cheng, S., Xiang, X-D., Dionne, G.F., Takeuchi, I.: Room temperature ferromagnetic n-type semiconductor in (In1–xFex)2O3–σ. Appl. Phys. Lett. 86, 052503 2005CrossRefGoogle Scholar
9Hong, N.H., Sakai, J., Hung, N.T., Brize, V.: Co-doped In2O3 thin films: Room temperature ferromagnets. J. Magn. Magn. Mater. 302, 228 2006CrossRefGoogle Scholar
10Jayakumar, O.D., Gopalakrishnan, I.K., Kulshreshtha, S.K., Gupta, A., Rao, K.V., Louzguine-Luzgin, D.V., Inoue, A., Glans, R-A., Guo, J-H., Samanta, K., Singh, M.K., Katiyar, R.S.: Structural and magnetic properties of (In1−xFex)2O3 (0.0 ⩽ x ⩽ 0.25) system: Prepared by gel combustion method. Appl. Phys. Lett. 91, 052504 2007CrossRefGoogle Scholar
11Liu, Q., Li, W., Ma, A., Tang, J., Lin, J., Fang, J.: Study of Quasi-monodisperse In2O3 nanocrystals: Synthesis and optical determination. J. Am. Chem. Soc. 127, 5276 2005CrossRefGoogle ScholarPubMed
12Tang, Q., Zhou, W., Zhang, W., Ou, S., Jiang, K., Yu, W., Qian, Y.: Size-controllable growth of single crystal In(OH)3 and In2O3 nanocubes. Cryst. Growth Des. 5, 147 2005CrossRefGoogle Scholar
13Zhao, Y., Zhang, Z., Wu, Z., Dang, H.: Synthesis and characterization of single-crystalline In2O3 nanocrystals via solution dispersion. Langmuir 20, 27 2004CrossRefGoogle ScholarPubMed
14Epifani, M., Siciliano, P., Gurlo, A., Barsan, N., Weimar, U.: Ambient pressure synthesis of corundum-type In2O3. J. Am. Chem. Soc. 126, 4078 2004CrossRefGoogle ScholarPubMed
15Narayanaswamy, A., Xu, H., Pradhan, N., Kim, M., Peng, X.: Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: Hydrolysis and alcoholysis vs pyrolysis. J. Am. Chem. Soc. 128, 10310 2006CrossRefGoogle ScholarPubMed
16Schwartz, D.A., Kittilstved, K.R., Gamelin, D.R.: Above-room-temperature ferromagnetic Ni2+-doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots. Appl. Phys. Lett. 85, 1395 2004CrossRefGoogle Scholar
17JCPDS No. 71-2194. International Center for Diffraction Data Newton Square, PA 1997Google Scholar
18Li, X., Xia, C., He, X., Gao, X., Liang, S., Pei, G., Dong, Y.: Enhancement of ferromagnetic properties in In1.99Co0.01O3 by additional Cu doping. Scr. Mater. 58, 171 2008CrossRefGoogle Scholar
19Aintzane, G., Luis, L., Ainhoa, P., Isabel, A.M., Teofilo, R.: Clustering of Fe3+ in the Li1−3xFexMgPO4 (0 < x < 0.1) solid solution. Int. J. Inorg. Mater. 3, 937 2001Google Scholar
20Chakradhar, R.P.S., Yasoda, B., Rao, J.L., Gopal, N.O.: Mixed alkali effect in Li2O–Na2O–B2O3 glasses containing Fe2O3—An EPR and optical absorption study. Mater. Res. Bull. 41, 1646 2006CrossRefGoogle Scholar
21Prakash, P. Giri, Murali, A., Rao, J.L.: EPR and optical absorption studies on Fe3+ ions in alkali borotellurite glasses. Phys. Chem. Glasses 43, 102 2002Google Scholar