Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T15:52:24.771Z Has data issue: false hasContentIssue false

Structural modifications of disordered mesocarbon microbeads with lower temperatures of heat treatment

Published online by Cambridge University Press:  31 January 2011

Prathap Haridoss
Affiliation:
Electronic and Electrochemical Materials and Devices Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Francisco A. Uribe
Affiliation:
Electronic and Electrochemical Materials and Devices Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Fernando H. Garzon
Affiliation:
Electronic and Electrochemical Materials and Devices Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Thomas A. Zawodzinski Jr.
Affiliation:
Electronic and Electrochemical Materials and Devices Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Extract

We describe the variation of structural and physical properties of mesocarbon microbeads, a potential anode material for rechargeable lithium batteries, as a function of heat-treatment temperature in the range 400–1100 °C. Scanning electron microscopy (SEM) studies indicated changes in the morphology of the mesocarbons with heat treatment. X-ray studies show that average crystallite size varies considerably with heat treatment. The d002 spacing decreases with increasing heat-treatment temperatures. The electronic conductivity of the mesocarbon microbeads also increases substantially with increasing heat-treatment temperature. Based on thermogravimetric analysis (TGA) and other measurements, we find that organic fractions volatilizes out of these carbons in two distinct stages. The observed weight loss correlates with the structural changes observed. We suggest that these observations are consistent with two types of hydrogenated fractions present in the “green” mesocarbons.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Brandt, K., Dfouchard, , and Stiles, J. A. R., Proc. 31st Power Sources Symp. (1984), p. 104.Google Scholar
2.Makrides, A. C., Abraham, K. M., Holleck, G. L., Nguyen, T. H., and Hurd, R. J., Proc. 34th Int. Power Sources Symp. (1990), p. 167.Google Scholar
3.Zuckerbrod, D., Giovannoni, R. T., and Grossman, K. R., Proc. 34th Int. Power Sources Symp. (1990), p. 172.Google Scholar
4.Murphy, T. C., Cason-Smith, D. M., James, S. D., and Smith, P. H., Proc. 34th Int. Power Sources Symp. (1990), p. 176.Google Scholar
5.Di Pietro, B., Patvianca, M., and Scrosati, B., J. Power Sources 8, 284 (1982).Google Scholar
6.Bittihn, R., Herr, R., and Hoge, D., J. Power Sources 43/44, 223 (1993).CrossRefGoogle Scholar
7.Goodenough, J. B., Solid State Ionics 69, 184198 (1994).CrossRefGoogle Scholar
8.Ishikawa, M., Morita, M., Asao, M., and Matsuda, Y., J. Electrochem. Soc. 141 (5), 11051108 (1994).Google Scholar
9.Yazami, R., Zaghib, K., and Deschamps, M., J. Power Sources 52, 5559 (1994).Google Scholar
10.Jiang, Z., Alamgir, M., and Abraham, K. M., J. Electrochem. Soc. 142 (2), 333340 (February 1995).Google Scholar
11.Coffey, B., Madsen, P. V., Poehler, T. O., and Searson, P. C., J. Electrochem. Soc. 142 (2), 321325 (February 1995).Google Scholar
12.Fong, R., Von Sacken, U., and Dahn, J. R., J. Electrochem. Soc. 137, 2009 (1990).CrossRefGoogle Scholar
13.Dahn, J. R., Sleigh, A. K., Shi, H., Way, B. M., Weydanz, W. J., Reimers, J. N., Zhong, Q., and von Sacken, U., in Lithium Batteries: New Materials, Developments and Perspectives, edited by Pistoia, G. (Elsevier, Amsterdam, 1994), Chap. 1.Google Scholar
14.Yazami, R., in Lithium Batteries: New Materials, Developments and Perspectives, edited by Pistoia, G. (Elsevier, Amsterdam, 1994), Chap. 2.Google Scholar
15.Dahn, J. R., Zheng, Tao, Liu, Yinghu, and Xue, J. S., Science 270, 590593 (October 1995).Google Scholar
16.Mabuchi, A., Fujimoto, H., Tokumitsu, K., and Kasuh, T., 7th International Meeting on Lithium Batteries, May 15–20, extended abstracts (1994), pp. 212216.Google Scholar
17.Mabuchi, A., Fujimoto, H., Tokumitsu, K., and Kasuh, T., 7th International Meeting on Lithium Batteries, Boston, May 15–20, extended abstracts (1994), pp. 221225.Google Scholar
18.Mabuchi, A., Tokumitsu, K., Fujimoto, H., and Kasuh, T., J. Electrochem. Soc. 142 (4), 10411046 (April 1995).Google Scholar
19.Tatsumi, K., Iwashita, N., Sakaebe, H., Shioyama, H., Higuchi, S., Mabuchi, A., and Fujimoto, H., J. Electrochem. Soc. 142 (3), 716720 (March 1995).Google Scholar
20. Communications from Osaka Gas Applications of Mesocarbon Microbeads.Google Scholar
21.Zheng, Tao, Reimers, J. N., and Dahn, J. R., Phys. Rev. B 51 (2), 734741 (January 1995).CrossRefGoogle Scholar
22.Yazumi, R. and Deschamps, M., J. Power Sources 54, 411415 (1995).Google Scholar
23.Dahn, J. R., Fong, R., and Spoon, M. J., Phys. Rev. B 42, 6424 (1990).Google Scholar