Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T00:10:53.819Z Has data issue: false hasContentIssue false

Structural, magnetic and electrical transport properties of double perovskite Tb2MnCoO6

Published online by Cambridge University Press:  28 March 2016

S.L. Wang
Affiliation:
Department of Physics, Center for Optoelectronic Materials and Devices, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
H. Xu
Affiliation:
Department of Physics, Center for Optoelectronic Materials and Devices, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
X.P. Wu
Affiliation:
Department of Physics, Center for Optoelectronic Materials and Devices, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
P.G. Li*
Affiliation:
Department of Physics, Center for Optoelectronic Materials and Devices, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
G. Ungar
Affiliation:
Department of Physics, Center for Optoelectronic Materials and Devices, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; and Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, South Yorkshire, United Kingdom
Y. Liu
Affiliation:
Department of Physics, Center for Optoelectronic Materials and Devices, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
J.Q. Shen
Affiliation:
Department of Physics, Center for Optoelectronic Materials and Devices, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
W.H. Tang*
Affiliation:
State Key Laboratory of Information Photonics & Optical Communication, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

The double perovskite Tb2MnCoO6 and two simple perovskites TbMnO3 and TbCoO3 were synthesized by a solid sintering reaction method. The Rietveld refinement results based on the x-ray powder diffraction data identified all samples as orthorhombic perovskite structures with space group Pbnm (62). The lattice parameters of Tb2MnCoO6 were a = 5.278 (3) Å, b = 5.579 (4) Å, and c = 7.513 (4) Å with a cell volume V = 221.2 (6) Å3, Z = 2. Meta-magnetic behavior was observed near 92 K for Tb2MnCoO6, which was considered to be related to the coexistence of and competition between the ferromagnetic order and antiferromagnetic order. Temperature-dependent resistance (R–T) was also measured. Compared with TbCoO3 and TbMnO3, Tb2MnCoO6 is more conductive, with its activation energy reduced from 0.3062 eV for TbCoO3 (0.2754 eV for TbMnO3) to 0.1949 eV. The results reported here can assist in understanding the multiferroic physics mechanism of double perovskite materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yáñez-Vilar, S., Mun, E.D., Zapf, V.S., Ueland, B.G., Gardn, J.S., Thompson, J.D., Single, J., and Sánchez-Andújar, M.: Multiferroic behavior in the double-perovskite Lu2MnCoO6 . Phys. Rev. B 84, 134427 (2011).CrossRefGoogle Scholar
Masud, M.G., Ghosh, A., Sannigrahi, J., and Chaudhuri, B.K.: Observation of relaxor ferroelectricity and multiferroic behaviour in nanoparticles of the ferromagnetic semiconductor La2NiMnO6 . J. Phys.: Condens. Matter 24, 295902 (2012).Google ScholarPubMed
Sharma, G., Saha, J., Kaushik, S.D., Siruguri, V., and Patnaik, S.: Magnetism driven ferroelectricity above liquid nitrogen temperature in Y2CoMnO6 . Appl. Phys. Lett. 103, 012903 (2013).CrossRefGoogle Scholar
Efremov, D.V., Brink, J., and Khomskii, D.I.: Bond-versus site-centered ordering and possible ferroelectricity in manganites. Nat. Mater. 3, 853856 (2004).CrossRefGoogle Scholar
Jia, C., Onoda, S., Nagaosa, N., and Han, J.H.: Microscopic theory of spin-polarization coupling in multiferroic transition metal oxides. Phys. Rev. B 76, 144424 (2007).CrossRefGoogle Scholar
Harris, A.B.: Ferroelectricity induced by incommensurate magnetism. J. Appl. Phys. 99, 08E303 (2006).CrossRefGoogle Scholar
Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y.: Magnetic control of ferroelectric polarization. Nature 426, 5558 (2003).CrossRefGoogle ScholarPubMed
Hur, N., Park, S., Sharma, P.A., Ahnl, J.S., Guha, S., and Cheong, S.W.: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392395 (2004).CrossRefGoogle Scholar
Knízek, K., Jirák, Z., Novák, P., and Cruz, C.: Non-collinear magnetic structures of TbCoO3 and DyCoO3 . Solid State Sci. 28, 2630 (2014).CrossRefGoogle Scholar
Cuartero, V., Blasco, J., García, J., Lafuerza, S., Subías, G., Rodríguez-Velamazán, J.A., and Ritter, C.: Enhancement of ferromagnetic correlations on multiferroic TbMnO3 by replacing Mn with Co. J. Phys.: Condens. Matter 24, 455601 (2012).Google ScholarPubMed
Cuartero, V., Blasco, J., García, J., Rodríguez-Velamazán, J.A., and Ritter, C.: Metamagnetic transition in Tb2MnCoO6 . EPJ Web Conf. 40, 15002 (2013). 1–4.CrossRefGoogle Scholar
Lutterotti, L., Matthies, S., Wenk, H.R., Schultz, A.J., and Richardson, J.: Texture and structure analysis of deformed limestone from neutron diffraction spectra. J. Appl. Phys. 81, 594600 (1997).CrossRefGoogle Scholar
Sivakumar, M., Gedanken, A., Bhattacharya, D., Brukental, I., Yeshurun, Y., Zhong, W., Du, Y.W., Felner, I., and Nowik, I.: Sonochemical synthesis of nanocrystalline rare earth orthoferrites using Fe(CO)5 precursor. Chem. Mater. 16, 36233632 (2004).CrossRefGoogle Scholar
El-Sheikh, S.M. and Rashad, M.M.: Effect of Sm3+ and Sr2+ dopants on the FT-IR, photoluminescence and surface texture of lanthanum chromite nanoparticles. J. Alloys Compd. 496, 723732 (2010).CrossRefGoogle Scholar
Han, J.T., Huang, Y.H., Huang, W., and Goodenough, J.B.: Selective synthesis of TbMn2O5 nanorods and TbMnO3 micron crystals. J. Am. Chem. Soc. 128, 1445414455 (2006).CrossRefGoogle ScholarPubMed
Li, B.X., Xie, Y., Wu, C.Z., Li, Z.Q., and Zhang, J.: Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures. Mater. Chem. Phys. 99, 479486 (2006).CrossRefGoogle Scholar
Chen, Y.C., Zhang, Y.G., and Fu, S.Q.: Synthesis and characterization of Co3O4 hollow spheres. Mater. Lett. 61, 701705 (2007).CrossRefGoogle Scholar
Sikora, M., Kapusta, C., Knízek, K., Jirák, J., Autret, C., Borowiec, M., Oates, C.J., Procházka, V., Rybicki, D., and Zajac, D.: X-ray absorption near-edge spectroscopy study of Mn and Co valence states in LaMn1−x Co x O3 (x = 0–1). Phys. Rev. B 73, 094426 (2006).CrossRefGoogle Scholar
Ikeda, H. and Matsubara, T.: Heat capacity of potential regenerator ABO3 materials at low temperature. Cryogenics 49, 291293 (2009).CrossRefGoogle Scholar
Pekala, M., Drozd, V., Fagnard, J.F., Vanderbemden, P., and Ausloos, M.: Magneto transport characterization of the Sn-doped TbMnO3 manganites. J. Alloys Compd. 467, 3540 (2009).CrossRefGoogle Scholar
Aliouane, N., Schmalzl, K., Senff, D., Maljuk, A., Prokes, K., Braden, M., and Argyriou, D.N.: Flop of electric polarization driven by the flop of the Mn spin cycloid in multiferroic TbMnO3 . Phys. Rev. Lett. 102, 207205 (2009).CrossRefGoogle ScholarPubMed
Cuartero, V., Blasco, J., Rodríguez-Velamazán, J.A., García, J., Subías, G., and Ritter, C.: Transitions induced by a magnetic field in slightly doped TbMnO3 . Solid State Sci. 21, 3743 (2013).CrossRefGoogle Scholar
Rivadulla, F., Lopez-Quintela, M.A., Hueso, L.E., Sande, P., Rivas, J., and Sanchez, R.D.: Effect of Mn-site doping ion the magnetotransport properties of the colossal magnetoresistance compound La0.67Ca0.33Mn1−x A x O3 (A = Co, Cr, x ≤ 0.1). Phys. Rev. B 62, 56785684 (2000).CrossRefGoogle Scholar
Srivastava, C.M., Banerjee, S., GunduRao, T.K., Nigam, A.K., and Bahaadur, D.: Evidence of spin transition and charge order in cobalt substituted La0.67Ca0.33MnO3 . J. Phys.: Condens. Matter 15, 23752389 (2003).Google Scholar
Zhang, R.L., Song, W.H., Ma, Y.H., Yang, J., Zhao, B.C., Dai, J.M., and Sun, Y.P.: Influence of Co doping on the charge-ordering state of the bilayered Manganites LaSr2Mn2O7 . Phys. Rev. B 70, 224418 (2004).CrossRefGoogle Scholar
Chan, T.S., Liu, R.S., Yang, C.C., Li, W.H., Lien, Y.H., Huang, C.Y., and Lee, J.F.: Chemical size effect on the magnetic and electrical properties in the (Tb1−x Eu x )MnO3 (0 ≤ x ≤ 1.0) system. J. Phys. Chem. B 111, 22622267 (2007).CrossRefGoogle Scholar
Prasatkhetragarn, A., Kaowphong, S., and Yimnirun, R.: Synthesis, structural and electrical properties of double perovskite Sr2NiMoO6 ceramics. Appl. Phys. A 107, 117121 (2012).CrossRefGoogle Scholar
Li, M., Yuan, H.M., Xu, W., Han, M., Yao, L.R., Yang, M., and Feng, S.H.: Hydrothermal synthesis and dielectric characterization of a double perovskite Ba2FeSbO6 . Chem. Res. Chin. Univ. 28, 788791 (2012).Google Scholar
Mahato, D.K. and Sinha, T.P.: Electrical impedance and electric modulus approach of double perovskite Pr2ZnZrO6 ceramics. J. Mater. Sci.: Mater. Electron. 24, 43994405 (2013).Google Scholar
Orlandi, F., Righi, L., Cabassi, R., Delmonte, D., Pernechele, C., Bolzoni, F., Mezzadri, F., Solzi, M., Merlini, M., and Calestani, G.: Structural and electric evidence of ferrielectric state in Pb2MnWO6 double perovskite system. Inorg. Chem. 53, 1028310290 (2014).CrossRefGoogle Scholar
Salamon, M.B.: The physics of manganites: Structure and transport. Rev. Mod. Phys. 73, 583628 (2001).CrossRefGoogle Scholar