Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T09:54:57.005Z Has data issue: false hasContentIssue false

Structural evolution of WO3 nanoclusters on ZrO2

Published online by Cambridge University Press:  01 April 2006

C. Angeles-Chavez
Affiliation:
Instituto Mexicano del Petróleo. Prog. Ingeniería Molecular, 07730 México D. F, México
M.A. Cortes-Jácome
Affiliation:
Instituto Mexicano del Petróleo. Prog. Ingeniería Molecular, 07730 México D. F, México
E. Torres-Garcia
Affiliation:
Instituto Mexicano del Petróleo. Prog. Ingeniería Molecular, 07730 México D. F, México
J.A. Toledo-Antonio*
Affiliation:
Instituto Mexicano del Petróleo. Prog. Ingeniería Molecular, 07730 México D. F, México
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Direct evidence of the transformation of WOx species in WO3 nanoclusters on WOx–ZrO2 system was achieved by high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy on samples obtained by a conventional precipitation method and annealed from 560 to 800 °C. WO3 Nanoclusters with 2-nm crystal size orthorhombic structure were identified on the ZrO2 surface after annealing at 800 °C.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Arata, K., Hino, M.: Synthesis of superacid of tungsten oxide supported on zirconia and its catalytic action, in Proc. 9th Int. Congr. Catalysis, Chem. Soc., (1988), p. 1727.Google Scholar
2.Grau, J.M., Yori, J.C., Parera, J.M.: Hydroisomerization–cracking of n-octane on Pt/WO42−–ZrO2 and Pt/SO42−–ZrO2: Effect of Pt load on catalyst performance. Appl. Catal. A 213, 247 (2001).CrossRefGoogle Scholar
3.Barton, D., Soled, S.L., Meitzner, D., Fuentes, G.A., Iglesia, E.: Structural and catalytic characterization of solid acids based on zirconia modified by tungsten oxide. J. Catal. 181, 57 (1999).CrossRefGoogle Scholar
4.Boyse, R.A., Ko, E.: Crystallization behavior of tungstate on zirconia and its relationship to acidic properties. J. Catal. 171, 191 (1997).CrossRefGoogle Scholar
5.Barton, D., Shtein, M., Wilson, R., Soled, S., Iglesia, E.: Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 103, 630 (1999).CrossRefGoogle Scholar
6.Cortés-Jacome, M.A., Toledo, J.A., Armendáriz, H., Hernández, I., Bokhimi, X.: Solid solutions of WO3 into zirconia in WO3–ZrO2 catalysts. J. Solid State Chem. 164, 339 (2002).CrossRefGoogle Scholar
7.Gao, Y., Merkle, K.L., Bai, G., Chang, H.L.M., Lam, D.J.: [001] Tilt grain boundaries in YBa2Cu3O7−x thin films. Ultramicroscopy 37, 326 (1991).CrossRefGoogle Scholar
8.Contreras, A., Albiter, A., Pérez, R.: Microstructural properties of the Al–Mg x/TiC composites obtained by infiltration techniques. J. Phys. Condens. Matter. 16, S2241 (2004).CrossRefGoogle Scholar
9.Jouanne, M., Morhange, J.F., Kanehise, M., Haro-Poniatowski, E., Fuentes, G.A., Torres, E., Hernández-Tellez, E.: Structural transformations in nanosized zirconium oxide. Phys. Rev. B 64, 155404 (2001).CrossRefGoogle Scholar
10.Loridant, S., Feche, C., Essayem, N., Figueras, F.: WOx/ZrO2 Catalysts prepared by anionic exchange: In situ raman investigation from the precursor solutions to the calcined catalysts. J. Phys. Chem. B 109, 5631 (2005).CrossRefGoogle Scholar