Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T18:22:26.290Z Has data issue: false hasContentIssue false

Structural complexity of layered-spinel composite electrodes for Li-ion batteries

Published online by Cambridge University Press:  31 January 2011

Jordi Cabana
Affiliation:
Chemistry Department, State University of New York at Stony Brook, Stony Brook, New York 11794
Christopher S. Johnson
Affiliation:
Department of Electrochemical Energy Storage, Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439
Kyung-Yoon Chung
Affiliation:
Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973
Won-Sub Yoon*
Affiliation:
School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Korea
Michael M. Thackeray
Affiliation:
Department of Electrochemical Energy Storage, Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439
Clare P. Grey*
Affiliation:
Chemistry Department, State University of New York at Stony Brook, Stony Brook, New York 11794
*
a)Address all correspondence to this author. e-mail: [email protected]
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The complexity of layered-spinel yLi2MnO3·(1 – y)Li1+xMn2–xO4 (Li:Mn = 1.2:1; 0 ≤ x ≤ 0.33; y ≥ 0.45) composites synthesized at different temperatures has been investigated by a combination of x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), and nuclear magnetic resonance (NMR). While the layered component does not change substantially between samples, an evolution of the spinel component from a high to a low lithium excess phase has been traced with temperature by comparing with data for pure Li1+xMn2–xO4. The changes that occur to the structure of the spinel component and to the average oxidation state of the manganese ions within the composite structure as lithium is electrochemically removed in a battery have been monitored using these techniques, in some cases in situ. Our 6Li NMR results constitute the first direct observation of lithium removal from Li2MnO3 and the formation of LiMnO2 upon lithium reinsertion.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Armand, M., Tarascon, J.M.Building better batteries. Nature 451, 652 (2008)CrossRefGoogle ScholarPubMed
2.Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997)CrossRefGoogle Scholar
3.Nagaura, T., Tozawa, K.Lithium ion rechargeable battery. Prog. Batteries Sol. Cells 9, 209 (1990)Google Scholar
4.Whittingham, M.S.Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004)CrossRefGoogle ScholarPubMed
5.Tarascon, J.M., Guyomard, D.The Li1+xMn2O4/C rocking-chair system: A review. Electrochim. Acta 38, 1221 (1993)CrossRefGoogle Scholar
6.Thackeray, M.M.Manganese oxides for lithium batteries. Prog. Solid State Chem. 25, 1 (1997)CrossRefGoogle Scholar
7.Thackeray, M.M., David, W.I.F., Bruce, P.G., Goodenough, J.B.Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461 (1983)CrossRefGoogle Scholar
8.Mosbah, A., Verbaere, A., Tournoux, M.LiXMnO2λ phases related to the spinel type. Mater. Res. Bull. 18, 1375 (1983)CrossRefGoogle Scholar
9.David, W.I.F., Thackeray, M.M., De Picciotto, L.A., Goodenough, J.B.Structure refinement of the spinel-related phases Li2Mn2O4 and Li0.2Mn2O4. J. Solid State Chem. 67, 316 (1987)CrossRefGoogle Scholar
10.Le Cras, F., Anne, M., Bloch, D., Strobel, P.Structural in-situ study of Li intercalation in Li1+αMn2–αO4 spinel-type oxides. Solid State Ionics 106, 1 (1998)CrossRefGoogle Scholar
11.Kalyani, P., Chitra, S., Mohan, T., Gopukumar, S.Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J. Power Sources 80, 103 (1999)CrossRefGoogle Scholar
12.Robertson, A.D., Bruce, P.G.Mechanism of electrochemical activity in Li2MnO3. Chem. Mater. 15, 1984 (2003)CrossRefGoogle Scholar
13.Rossouw, M.H., Liles, D.C., Thackeray, M.M.Synthesis and structural characterization of a novel layered lithium manganese oxide, Li0.36Mn0.91O2, and its lithiated derivative, Li1.09Mn0.91O2. J. Solid State Chem. 104, 464 (1993)CrossRefGoogle Scholar
14.Tang, W.P., Kanoh, H.F., Yang, X.J., Ooi, K.Preparation of plate-form manganese oxide by selective lithium extraction from monoclinic Li2MnO3 under hydrothermal conditions. Chem. Mater. 12, 3271 (2000)CrossRefGoogle Scholar
15.Paik, Y., Grey, C.P., Johnson, C.S., Kim, J.S., Thackeray, M.M.Lithium and deuterium NMR studies of acid-leached layered lithium manganese oxides. Chem. Mater. 14, 5109 (2002)CrossRefGoogle Scholar
16.Rossouw, M.H., Liles, D.C., Thackeray, M.M., David, W.I.F., Hull, S.Alpha manganese dioxide for lithium batteries: A structural and electrochemical study. Mater. Res. Bull. 27, 221 (1992)CrossRefGoogle Scholar
17.Thackeray, M.M., Johnson, C.S., Vaughey, J.T., Li, N., Hackney, S.A.Advances in manganese-oxide ‘composite' electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257 (2005)CrossRefGoogle Scholar
18.Johnson, C.S., Li, N., Vaughey, J.T., Hackney, S.A., Thackeray, M.M.Lithium-manganese oxide electrodes with layered-spinel composite structures xLi2MnO3·(1 – x)Li1+yMn2–yO4 (0 < x < 1, 0 ≤ y ≤ 0.33) for lithium batteries. Electrochem. Commun. 7, 528 (2005)CrossRefGoogle Scholar
19.Park, S.H., Kang, S.H., Johnson, C.S., Amine, K., Thackeray, M.M.Lithium–manganese–nickel-oxide electrodes with integrated layered–spinel structures for lithium batteries. Electrochem. Commun. 9, 262 (2007)CrossRefGoogle Scholar
20.Cabana, J., Kang, S.H., Johnson, C.S., Thackeray, M.M., Grey, C.P.Structural and electrochemical characterization of composite layered-spinel electrodes containing Ni and Mn for Li-ion batteries. J. Electrochem. Soc. 156, A730 (2009)CrossRefGoogle Scholar
21.Thompson, P., Cox, D.E., Hastings, J.B.Rietveld refinement of Debye-Scherrer synchrotron x-ray data from Al2O3. J. Appl. Cryst. 20, 79 (1987)CrossRefGoogle Scholar
22.Casas-Cabanas, M., Rodríguez-Carvajal, J., Oró-Solé, J., Palacín, M.R.A survey of diverse approximations for microstructural characterization using powder diffraction data: β-Ni(OH)2 a case studySolid-State Ionics—2006 edited by E. Traversa, T.R. Armstrong, C. Masquelier, and Y. Sadaoka (Mater. Res. Soc. Symp. Proc 972, Warrendale, PA 2007) 0972-AA13-01 227Google Scholar
23.Takada, T., Hayakawa, H., Akiba, E.Preparation and crystal structure refinement of Li4Mn5O12 by the Rietveld method. J. Solid State Chem. 115, 420 (1995)CrossRefGoogle Scholar
24.Fong, C., Kennedy, B.J., Elcombe, M.M.A powder neutron-diffraction study of lambda-manganese dioxide and gamma-manganese dioxide and of LiMn2O4. Z. Kristallogr. 209, 941 (1994)CrossRefGoogle Scholar
25.Strobel, P., Lambert-Andron, B.Crystallographic and magnetic-structure of Li2MnO3. J. Solid State Chem. 75, 90 (1988)CrossRefGoogle Scholar
26.Bréger, J., Jiang, M., Dupré, N., Meng, Y.S., Shao-Horn, Y., Ceder, G., Grey, C.P.High-resolution x-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution. J. Solid State Chem. 178, 2575 (2005)CrossRefGoogle Scholar
27.Grey, C.P., Dupré, N.NMR studies of cathode materials for lithium-ion rechargeable batteries. Chem. Rev. 104, 4493 (2004)CrossRefGoogle ScholarPubMed
28.Lee, Y.J., Grey, C.P.Determining the lithium local environments in the lithium manganates LiZn0.5Mn1.5O4 and Li2MnO3 by analysis of the 6Li MAS NMR spinning sideband manifolds. J. Phys. Chem. B 106, 3576 (2002)CrossRefGoogle Scholar
29.Mustarelli, P., Massarotti, V., Bini, M., Capsoni, D.Transferred hyperfine interaction and structure in LiMn2O4 and Li2MnO3 coexisting phases: A XRD and 7Li NMR-MAS study. Phys. Rev. B 55, 12018 (1997)CrossRefGoogle Scholar
30.Morgan, K.R., Collier, S., Burns, G., Ooi, K.A 6Li and 7Li MAS NMR-study of the spinel-type manganese oxide LiMn2O4 and the rock salt-type manganese oxide Li2MnO3. J. Chem. Soc. Chem. Commun. 1719 (1994)CrossRefGoogle Scholar
31.Grey, C.P., Lee, Y.J.Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci. 5, 883 (2003)CrossRefGoogle Scholar
32.Casas-Cabanas, M., Rodríguez-Carvajal, J., Canales-Vázquez, J., Laligant, Y., Lacorre, P., Palacín, M.R.Microstructural characterization of battery materials using powder diffraction data: DIFFaX, FAULTS and SH-FullProf approaches. J. Power Sources 174, 414 (2007)CrossRefGoogle Scholar
33.Lee, Y.J., Grey, C.P.6Li and 7Li MAS NMR studies of lithium manganate cathode materials. J. Am. Chem. Soc. 120, 12601 (1998)CrossRefGoogle Scholar
34.Lee, Y.J., Grey, C.P.6Li magic angle spinning nuclear magnetic resonance study of the cathode materials Li1+αMn2–αO4–δ—The effect of local structure on the electrochemical properties. J. Electrochem. Soc. 2, A103 (2002)CrossRefGoogle Scholar
35.Masquelier, C., Tabuchi, M., Ado, K., Kanno, R., Kobayashi, Y., Maki, Y., Nakamura, O., Goodenough, J.B.Chemical and magnetic characterization of spinel materials in the LiMn2O4-Li2Mn4O9-Li4Mn5O12 system. J. Solid State Chem. 123, 255 (1996)CrossRefGoogle Scholar
36.Paulsen, J.M., Dahn, J.R.Phase diagram of Li-Mn-O spinel in air. Chem. Mater. 11, 3065 (1999)CrossRefGoogle Scholar
37.Gummow, R.J., De Kock, A., Thackeray, M.M.Improved capacity retention in rechargeable 4V lithium/lithium manganese oxide (spinel) cells. Solid State Ionics 69, 59 (1994)CrossRefGoogle Scholar
38.Hunter, J.C.Preparation of a new crystal form of manganese dioxide: λ-MnO2. J. Solid State Chem. 39, 142 (1981)CrossRefGoogle Scholar
39.Thackeray, M.M., De Kock, A., Rossouw, M.H., Liles, D., Bittihn, R., Hoge, D.Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications. J. Electrochem. Soc. 139, 363 (1992)CrossRefGoogle Scholar
40.Ohzuku, T., Kitagawa, M., Hirai, T.Electrochemistry of manganese-dioxide in lithium nonaqueous cell. 3. X-ray diffractional study on the reduction of spinel-related manganese-dioxide. J. Electrochem. Soc. 137, 769 (1990)CrossRefGoogle Scholar
41.Lee, Y.J., Grey, C.P.6Li magic-angle spinning (MAS) NMR study of electron correlations, magnetic ordering, and stability of lithium manganese(III) oxides. Chem. Mater. 12, 3871 (2000)CrossRefGoogle Scholar
42.Xia, Y.Y., Yoshio, M.An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds. J. Electrochem. Soc. 143, 825 (1996)CrossRefGoogle Scholar
43.Richard, M.N., Koetschau, I., Dahn, J.R.A cell for in situ x-ray diffraction based on coin cell hardware and Bellcore plastic electrode technology. J. Electrochem. Soc. 144, 554 (1997)CrossRefGoogle Scholar
44.Lee, Y.J., Wang, F., Mukerjee, S., McBreen, J., Grey, C.P.6Li and 7Li magic-angle spinning nuclear magnetic resonance and in situ x-ray diffraction studies of the charging and discharging of LixMn2O4 at 4 V. J. Electrochem. Soc. 147, 803 (2000)CrossRefGoogle Scholar
45.Rossouw, M.H., Thackeray, M.M.Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications. Mater. Res. Bull. 26, 463 (1991)CrossRefGoogle Scholar