Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T02:33:08.128Z Has data issue: false hasContentIssue false

Structural and chemical stability of thin films of Pt–Ga intermetallic compounds of GaAs(001)

Published online by Cambridge University Press:  31 January 2011

Young K. Kim
Affiliation:
Department of Chemistry and Biochemistry and Solid State Science Center, University of California, Los Angeles, California 90024-1569
Delroy A. Baugh
Affiliation:
Department of Chemistry and Biochemistry and Solid State Science Center, University of California, Los Angeles, California 90024-1569
David K. Shuh
Affiliation:
Department of Chemistry and Biochemistry and Solid State Science Center, University of California, Los Angeles, California 90024-1569
R. Stanley Williams
Affiliation:
Department of Chemistry and Biochemistry and Solid State Science Center, University of California, Los Angeles, California 90024-1569
Larry P. Sadwick
Affiliation:
Department of Electrical Engineering Device Research Laboratory, University of California, Los Angeles, California 90024-1594
Kang L. Wang
Affiliation:
Department of Electrical Engineering Device Research Laboratory, University of California, Los Angeles, California 90024-1594
Get access

Abstract

Nearly single-phase thin films of three different Pt–Ga intermetallic compounds have been grown on GaAs(001) by co-deposition of Pt and Ga. The resultant films have been annealed at various temperatures and then characterized using x-ray two-theta diffractometry (XRD), Auger electron spectroscopy (AES), and x-ray photoemission spectroscopy (XPS). The XRD results showed that PtGa2 and PtGa thin films are chemically stable on GaAs under one atmosphere of N2 up to 800 °C and 600 °C, respectively, but thin films of Pt2Ga react with GaAs at temperatures as low as 200 °C to form phases with higher Ga concentration PtAs2. The XRD patterns also revealed that the crystallite orientation and texture of the films were dependent on annealing temperature. Segregation of Ga to the surfaces of the films upon annealing was also observed by both AES and XPS. The results demonstrated that the as-deposited films of PtGa2 and PtGa were kinetically stabilized with respect to possible chemical reactions with the GaAs substrates that evolve gaseous As species during open system annealing.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1, K. N. TU and Mayer, J. W., in Thin Films-Interdiffusions and reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W. (Wiley, New York, 1978).Google Scholar
2Brillson, L. J., J. Phys. Chem. Solids 44, 703 (1983).CrossRefGoogle Scholar
3Tsai, C. T. and Williams, R. S., J. Mater. Res. 1, 352 (1986).Google Scholar
4Pugh, J. H. and Williams, R. S., J. Mater. Res. 1, 343 (1986).CrossRefGoogle Scholar
5Lince, J. R. and Williams, R. S., Thin Solid Films 137, 251 (1986).CrossRefGoogle Scholar
6Lince, J. R., Tsai, C. T., and Williams, R. S., J. Mater. Res. 1, 537 (1986).CrossRefGoogle Scholar
7Sinha, A. K. and Poate, J. M., Appl. Phys. Lett. 23, 666 (1973).CrossRefGoogle Scholar
8Sinha, A. K. and Poate, J. M., Proc. 6th Int. Vacuum Congress, Jpn. J. Appl. Phys., Suppl. 2, Pt. 1, 841 (1974).CrossRefGoogle Scholar
9Coleman, D. J., Jr., Wisseman, W. R., and Shaw, D. W., Appl. Phys. Lett. 24, 355 (1974).CrossRefGoogle Scholar
10Murarka, S. P., Solid State Electron. 17, 869 (1975).CrossRefGoogle Scholar
11Murarka, S. P., Solid State Electron. 17, 985 (1975).CrossRefGoogle Scholar
12Kumar, V., J. Phys. Chem. Solids 36, 535 (1975).CrossRefGoogle Scholar
13Chang, C. C., Murarka, S. P., Kumar, V., and Quintana, G., J. Appl. Phys. 46, 4237 (1975).CrossRefGoogle Scholar
14Kim, H. B., Sweeney, G. G., and Heng, T. M. S., Inst. Phys. Con. Ser. (London) 24, 307 (1975).Google Scholar
15Feldman, L. C. and Silverman, P. J., in Ion Beam Surface Layer Analysis, edited by Meyer, O., Linker, G., and Kappeler, F. (Plenum Press, New York, 1976), p. 735.CrossRefGoogle Scholar
16Begley, D. L., Alexander, R. W., Bell, R. J., and Goben, C. A., Surf. Sci. 104, 341 (1981).CrossRefGoogle Scholar
17Fontaine, C., Okumura, T., and Tu, K. N., J. Appl. Phys. 54, 1404 (1983).CrossRefGoogle Scholar
18Tsai, C. T. and Williams, R. S. (unpublished research).Google Scholar
19Zheng, X-Y., Schultz, K. J., Lin, J-C., and Chang, Y. A., J. Less- Common Metals 146, 233 (1989).CrossRefGoogle Scholar
20Kim, Y. K., Shuh, D. K., Williams, R. S., Sadwick, L. P., and Wang, K., Proc. Mat. Res. Soc. Symp. (in press).Google Scholar
21 JCPDS, Powder Diffraction File: Inorganic Phases (1987). International Center for Diffraction Data.Google Scholar
22Hellner, E. and Laves, F., Z. Naturforsch. 2a, 177 (1947).CrossRefGoogle Scholar
23Kim, Y. K., Shuh, D. K., Williams, R. S., Sadwick, L. P., and Wang, K. L., submitted to Phys. Rev. B.Google Scholar
24Kim, S., Hsu, L. S., and Williams, R. S., Phys. Rev. B 36, 3099 (1987).CrossRefGoogle Scholar
25Seah, M. P. and Dench, W. A., Surf. Interface Anal. 1, 2 (1979).CrossRefGoogle Scholar
26Sinha, A. K. and Poate, J. M., Appl. Phys. Lett. 23, 666 (1973).CrossRefGoogle Scholar
27Betz, G. and Wehner, G. K., in Sputtering by Particle Bombardment II, edited by Behrisch, R., Topics Appl. Phys. 52 (Springer, Berlin, Heidelberg, New York, 1983), Chap. 2.CrossRefGoogle Scholar
28Sachtler, W. M. H. and Dorgelo, G. J. H., J. Catalysis 4, 654 (1965).CrossRefGoogle Scholar
29Bouwman, R. and Sachtler, W. M., J. Catalysis 19, 127 (1970).CrossRefGoogle Scholar
30Bouwman, R. and Sachtler, W. M., J. Catalysis 25, 350 (1972).CrossRefGoogle Scholar
31Williams, F. L. and Nason, D., Surf. Sci. 45, 377 (1974).CrossRefGoogle Scholar
32McLean, D., Grain Boundaries in Metals (Clarendon, Oxford, 1957).Google Scholar
33Hultgren, R., Orr, R., Anderson, P., and Kelley, K., Selected Values of Thermodynamic Properties of Metals and Alloys (Wiley, New York, 1963).Google Scholar