Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T00:07:22.686Z Has data issue: false hasContentIssue false

Stress induced anisotropy in Co-rich magnetic nanocomposites for inductive applications

Published online by Cambridge University Press:  04 October 2016

A. Leary*
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15221
V. Keylin
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15221
A. Devaraj
Affiliation:
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354
V. DeGeorge
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15221
P. Ohodnicki
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15221, and National Energy Technology Laboratory (NETL), Pittsburgh, PA 15236
M.E. McHenry
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15221
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Magnetic nanocomposites, annealed under stress, are investigated for application in inductive devices. Stress annealed Co-based metal/amorphous nanocomposites (MANCs) previously demonstrated induced magnetic anisotropies greater than an order of magnitude larger than field annealed Co-based MANCs and response to applied stress twice that of Fe-based MANCs. Transverse magnetic anisotropies and switching by rotational processes impact anomalous eddy current losses at high frequencies. Here we review induced anisotropies in soft magnetic materials and show new Co-based MANCs having seven times the response to stress annealing as compared to Fe-based MANC systems. This response correlates with the alloying of early transition metal elements (TE) that affect both induced anisotropies and resistivities. At optimal alloy compositions, these alloys exhibit a nearly linear BH loop, with tunable permeabilities. The electrical resistivity is not a function of processing stress but trends in electrical resistivity and induced anisotropy with choice and concentration of TE content are clearly resolved. Previously reported and record-level induced anisotropies, K u, ∼20 kJ/m3 (anisotropy fields, H K ∼ 500 Oe), in stress annealed Co-rich MANCs are increased to K u ∼ 70 kJ/m3 (H K > 1800 Oe) in new systems.

Type
Editor's Feature
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hefner, A.R.: High-voltage, high-frequency devices for solid state power substation and grid power converters. In High Megawatt Power Converter Technology R&D Roadmap Workshop. (2008). http://www.nist.gov/pml/high_megawatt/upload/Hefner.pdf.Google Scholar
Brown, G.V., Kascak, A.F., Ebihara, B., Johnson, D., Choi, B., Stebert, M., and Buccieri, C.: NASA Glenn Research Center Program in high power density motors for aeropropulsion (2005). http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20060003628.pdf.Google Scholar
Shen, W., Wang, F., Boroyevich, D., and Tipton, C.W.: Loss characterization and calculation of nanocrystalline cores for high-frequency magnetics applications. IEEE Trans. Power Electron. 23, 475484 (2008).Google Scholar
McHenry, M.E., Willard, M.a., and Laughlin, D.E.: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291433 (1999).CrossRefGoogle Scholar
Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., and Liu, J.P.: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 23, 821842 (2011).Google Scholar
Willard, M.A. and Daniil, M.: Nanocrystalline soft magnetic alloys two decades of progress. In Handbook of Magnetic Materials, Vol. 21 (Elsevier B.V., Amsterdam, 2013).Google Scholar
Kurniawan, M., Roy, R.K., Panda, A.K., Greve, D.W., and Ohodnicki, P.R.: Interplay of stress, temperature, and giant magnetoimpedance in amorphous soft magnets. Appl. Phys. Lett. 105, 15 (2014).Google Scholar
Kurniawan, M., Roy, R.K., Panda, a.K., Greve, D.W., Ohodnicki, P., and McHenry, M.E.: Temperature-dependent giant magnetoimpedance effect in amorphous soft magnets. J. Electron. Mater., 43(112), 45764581 (2014). doi: 10.1007/s11664-014-3469-7.Google Scholar
Kernion, S.J., Ohodnicki, P.R. Jr., Grossmann, J., Leary, A., Shen, S., Keylin, V., Huth, J.F., Horwath, J., Lucas, M.S., and McHenry, M.E.: Giant induced magnetic anisotropy in strain annealed Co-based nanocomposite alloys. Appl. Phys. Lett. 101, 102408 (2012).Google Scholar
Ohodnicki, P.R., Long, J., Laughlin, D.E., McHenry, M.E., Keylin, V., and Huth, J.: Composition dependence of field induced anisotropy in ferromagnetic (Co,Fe)89Zr7B4 and (Co,Fe)88Zr7B4Cu1 amorphous and nanocrystalline ribbons. J. Appl. Phys. 104, 113909 (2008).Google Scholar
Ohodnicki, P.R., Laughlin, D.E., McHenry, M.E., Keylin, V., and Huth, J.: Temperature stability of field induced anisotropy in soft ferromagnetic Fe,Co-based amorphous and nanocomposite ribbons. J. Appl. Phys. 105, 07A322 (2009).Google Scholar
Leary, A.M., Ohodnicki, P.R., and McHenry, M.E.: Soft magnetic materials in high-frequency, high-power conversion applications. JOM 64, 772781 (2012).Google Scholar
Daniil, M., Ohodnicki, P.R., Mchenry, M.E., and Willard, M.A.: Shear band formation and fracture behavior of nanocrystalline (Co,Fe)-based alloys. Philos. Mag. 90, 15471565 (2010).Google Scholar
Heil, T.M., Wahl, K.J., Lewis, A.C., Mattison, J.D., and Willard, M.A.: Nanocrystalline soft magnetic ribbons with high relative strain at fracture. Appl. Phys. Lett. 90, 212508 (2007).Google Scholar
DeGeorge, V., Shen, S., Ohodnicki, P., Andio, M., and McHenry, M.E.: Multiphase resistivity model for magnetic nanocomposites developed for high frequency, high power transformation. J. Electron. Mater. 43, 96108 (2013).CrossRefGoogle Scholar
Leary, A.M., Keylin, V., Ohodnicki, P.R., and McHenry, M.E.: Stress induced anisotropy in CoFeMn soft magnetic nanocomposites. J. Appl. Phys. 117, 17A338 (2015).Google Scholar
Friedel, J.: Metallic alloys. Nuovo Cimento VII, 287311 (1958).Google Scholar
Slater, J.C.: Electronic structure of alloys. J. Appl. Phys. 8, 385 (1937).CrossRefGoogle Scholar
Pauling, L.: The nature of the interatomic forces in metals. Phys. Rev. 54, 899904 (1938).Google Scholar
Mchenry, M.E. and Laughlin, D.E.: In Phys. Metall., Vol. 2 (Elsevier B.V., Amsterdam, 2014); pp. 18812008.Google Scholar
Anisimov, V.I., Antropov, V.P., Lichtenstein, A.I., Gubanov, V.A., and Postnikov, A.V.: Electronic structure and magnetic properties of 3d impurities in ferromagnetic metals. Phys. Rev. B 37, 5598 (1988).Google Scholar
Stepanyuk, V.S., Zeller, R., Dederichs, P.H., and Mertig, I.: Electronic structure and magnetic properties of dilute Co alloys with transition-metal impurities. Phys. Rev. B 49(8), 51575164 (1994).Google Scholar
Corb, B.W. and O'Handley, R.C.: Magnetic properties and short-range order in Co–Nb–B alloys. Phys. Rev. B 31, 72137218 (1985).Google Scholar
Malozemoff, A.P., Williams, A.R., and Moruzzi, V.L.: “Band-gap theory” of strong ferromagnetism: Application to concentrated crystalline and amorphous Fe- and Co-metalloid alloys. Phys. Rev. B 29, 16201632 (1984).Google Scholar
Ghemawat, A.M., McHenry, M.E., and O'Handley, R.C.: Magnetic moment suppression in rapidly solidified Co–TE–B alloys. J. Appl. Phys. 63, 33883390 (1988).Google Scholar
Ramalingum, B., van Ek, J., MacLaren, J.M., and McHenry, M.E.: Electronic structure and bonding in titanium carbosulfide. Philos. Mag. B 80, 379394 (2000).CrossRefGoogle Scholar
Ohodnicki, P.R., Keylin, V., McWilliams, H.K., Laughlin, D.E., and McHenry, M.E.: Phase evolution and field-induced magnetic anisotropy of the nanocomposite three-phase fcc, hcp, and amorphous soft magnetic alloy Co[sub 89]Zr[sub 7]B[sub 4]. J. Appl. Phys. 103, 07E740 (2008).Google Scholar
Hsiao, A., McHenry, M.E., Laughlin, D.E., Kramer, M.J., Ashe, C., and Ohkubo, T.: The thermal, magnetic, and structural characterization of the crystallization amorphous soft magnetic ribbon. IEEE Trans. Magn. 38, 30393044 (2002).Google Scholar
MacLaren, J.M., Schulthess, T.C., Butler, W.H., Sutton, R., and McHenry, M.: Electronic structure, exchange interactions, and Curie temperature of FeCo. J. Appl. Phys. 85, 4833 (1999).Google Scholar
Ping, D.H., Wu, Y.Q., Hono, K., Willard, M.A., Laughlin, D.E., and McHenry, M.E.: Microstructural characterization. Scr. Mater. 45, 781786 (2001).Google Scholar
Zener, C.: Classical theory of the temperature dependence of magnetic anisotropy energy. Phys. Rev. 96, 13 (1954).Google Scholar
Callen, H.B. and Callen, E.: The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l + 1)/2 power law. J. Phys. Chem. Solids 27, 12711285 (1966).Google Scholar
Herzer, G., Budinsky, V., and Polak, C.: Magnetic properties of Fe Cu Nb Si B nanocrystallized by flash annealing under high tensile stress. Phys. Status Solidi B 248, 23822388 (2011).Google Scholar
Iwanabe, H., Lu, B., McHenry, M.E., and Laughlin, D.E.: Thermal stability of the nanocrystalline Fe–Co–Hf–B–Cu alloy. J. Appl. Phys. 85, 4424 (1999).Google Scholar
Willard, M.A., Laughlin, D.E., McHenry, M.E., Thoma, D., Sickafus, K., Cross, J.O., and Harris, V.G.: Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. J. Appl. Phys. 84, 6773 (1998).Google Scholar
Lucas, M.S., Bourne, W.C., Sheets, A.O, Brunke, L., Alexander, M.D., Shank, J.M., Michel, E., Semiatin, S.L., Horwath, J., and Turgut, Z.: Nanocrystalline Hf and Ta containing FeCo based alloys for high frequency applications. Mater. Sci. Eng., B 176, 10791084 (2011).Google Scholar
Leary, A.M., Ohodnicki, P.R., McHenry, M.E., Keylin, V., Huth, J., Kernion, S.J.: Tunable anisotropy of Co-based nanocomposites for magnetic field sensing and inductor applications. U.S. Patent Application 2014/0338793 A1, filed May 15, 2014.Google Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F., and Gorman, B.: In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139 (2012).Google Scholar
Tan, F.D., Vollin, J.L., and Cuk, S.M.: A practical approach for magnetic core-loss characterization. IEEE Trans. Power Electron. 10, 124130 (1995).Google Scholar
Hou, D., Mu, M., Lee, F.C., and Li, Q.: New core loss measurement method with partial cancellation concept. Presented at the 2014 IEEE Appl. Power Electron. Conf. Expo.—APEC 2014, pp. 746751 (2014). doi: 10.1109/APEC.2014.6803391.Google Scholar
Corb, B.W., O'Handley, R.C., and Grant, N.J.: Chemical bonding and local symmetry in cobalt- and iron-metalloid alloys. J. Appl. Phys. 53, 77287730 (1982).Google Scholar
O'Handley, R.C.: Physics of ferromagnetic amorphous alloys. J. Appl. Phys. 62, R15 (1987).Google Scholar
Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L., eds.: Binary alloy phase diagrams (ASM International, Materials Park, 1990).Google Scholar
Ohodnicki, P.R., Qin, Y.L., Laughlin, D.E., McHenry, M.E., Kodzuka, M., Ohkubo, T., Hono, K., and Willard, M.A.: Composition and non-equilibrium crystallization in partially devitrified Co-rich soft magnetic nanocomposite alloys. Acta Mater. 57, 8796 (2009).Google Scholar
Goswami, R. and Willard, M.: Microstructure evolution in rapidly solidified ferromagnetic (Co0.95Fe0.05)89Zr7B4 nanocrystalline alloys. Scr. Mater. 59, 459462 (2008).Google Scholar
Zhu, Y.T., Liao, X.Z., and Wu, X.L.: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 162 (2012).Google Scholar
Ishida, K.: Direct estimation of stacking fault energy by thermodynamic analysis. Phys. Status Solidi 36, 717728 (1976).Google Scholar
Shen, S., Ohodnicki, P.R., Kernion, S.J., and Mchenry, M.E.: Two-current model of the composition dependence of resistivity in amorphous (Fe100−x Co x )89−y Zr7B4Cu y alloys using a rigid-band assumption. J. Appl. Phys. 112, 103705 (2012).Google Scholar
Degeorge, V., Devaraj, A., Keylin, V., Cui, J., and Mchenry, M.: Mass balance and atom probe tomography (APT) characterization of soft magnetic (Fe65Co35)79.5B13Si2Nb4Cu1.5 nanocomposites. IEEE Trans. Magn. 51, 1821 (2014).Google Scholar
Calbick, C.J. and Marcus, R.B.: Application of the twinning transformation matrix to derivation of the generalized reciprocal lattice with multiple diffraction. Acta Crystallogr. 23, 1217 (1967).Google Scholar
Panin, V.E. and Fadin, V.P.: Relation between stacking fault energy and the electronic structure of a metal or alloy. Sov. Phys. J. 12, 11911197 (1972).Google Scholar
Skomski, R. and Coey, J.M.D.: Exchange coupling and energy product in random two-phase aligned magnets. IEEE Trans. Magn. 30, 607609 (1994).Google Scholar
Herzer, G.: In Handb. Magn. Mater., Vol. 10 (Elsevier, Amsterdam, 1997); pp. 415462.Google Scholar
Suzuki, K. and Herzer, G.: Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys. Scr. Mater. 67, 548553 (2012).Google Scholar
Becker, R. and Doring, W.: Ferromagnetismus (Springer-Verlag, Berlin, 1938).Google Scholar
Becker, R. and Kersten, M.: Die Magnetisierung von Nickeldraht unter starkem Zug. Z. Phys. 64, 660681 (1930).CrossRefGoogle Scholar
Kersten, M.: Problems of the Technical Magnetisation Curve (Springer, Berlin, 1938).Google Scholar
Ott, R.T., Kramer, M.J., Besser, M.F., and Sordelet, D.J.: High-energy x-ray measurements of structural anisotropy and excess free volume in a homogenously deformed Zr-based metallic glass. Acta Mater. 54, 24632471 (2006).Google Scholar
Ohnuma, M., Herzer, G., Kozikowski, P., Polak, C., Budinsky, V., and Koppoju, S.: Structural anisotropy of amorphous alloys with creep-induced magnetic anisotropy. Acta Mater. 60, 12781286 (2012).Google Scholar
Herzer, G.: Creep induced magnetic anisotropy in nanocrystalline Fe–Cu–Nb–Si–B alloys. IEEE Trans. Magn. 30, 48004802 (1994).Google Scholar
Alves, F., Desmoulins, J.B., Herisson, D., Rialland, J.F., and Costa, F.: Stress-induced anisotropy in Finemet- and Nanoperm-type nanocrystalline alloys using flash annealing. J. Magn. Magn. Mater. 216, 387390 (2000).Google Scholar
Ohnuma, M., Hono, K., Yanai, T., Fukunaga, H., and Yoshizawa, Y.: Direct evidence for structural origin of stress-induced magnetic anisotropy in Fe–Si–B–Nb–Cu nanocrystalline alloys. Appl. Phys. Lett. 83, 28592861 (2003).Google Scholar
O'Handley, R.C.: Magnetostriction of Co80−x T x B20 (T = Fe, Mn, Cr, or V) glasses. J. Appl. Phys. 52, 18411843 (1981).Google Scholar
Barandiaran, J.M., Hernando, A., Madurga, V., Nielsen, O.V., Vazquez, M., and Vazquez-Lopez, M.: Temperature, stress, and structural-relaxation dependence of the magnetostriction in (Co0.94Fe0.06)75Si15B10 glasses. Phys. Rev. B 35, 50665071 (1987).Google Scholar
Hernando, A.: Influence of the tensile stress on the magnetostriction resistivity and magnetic anisotropy of Co-rich metallic glasses. TSRO and CSRO correlation. Phys. Scr. T24, 1121 (1988).CrossRefGoogle Scholar
Haimovich, J., Jagielinski, T., and Egami, T.: Magnetic and structural effects of anelastic deformation of an amorphous alloy. J. Appl. Phys. 57, 35813583 (1985).Google Scholar
Sucksmith, W. and Thompson, J.E.: The magnetic anisotropy of cobalt. Proc. R. Soc. A 225, 362375 (1954).Google Scholar
Chikazumi, S., Suzuki, K., and Iwata, H.: Studies on the magnetic anisotropy induced by cold rolling of ferromagnetic crystal (I) iron–nickel alloys. J. Phys. Soc. Jpn. 12, 12591275 (1957).Google Scholar
Chin, G.Y.: Slip-induced directional order in Fe–Ni alloys. II. Experimental observations. J. Appl. Phys. 38, 26232629 (1967).CrossRefGoogle Scholar
Chikazumi, S., Suzuki, K., and Iwata, H.: Studies on the magnetic anisotropy induced by cold rolling of ferromagnetic crystal, II. Iron–aluminum alloys. J. Phys. Soc. Jpn. 15, 250260 (1960).Google Scholar
Chin, G.Y.: Slip-induced directional order theory for B2-type superlattiees. Mater. Sci. Eng. 1, 7790 (1966).Google Scholar
Chin, G.Y.: Slip-induced directional order in Fe–Ni alloys. I. Extension of the Chikazumi–Suzuki–Iwata theory. J. Appl. Phys. 36, 2915 (1965).Google Scholar
Paige, D.M., Szpunar, B., and Tanner, B.K.: The magnetocrystalline anisotropy of cobalt. J. Magn. Magn. Mater. 44, 239248 (1984).Google Scholar
Takahashi, M., Kadowaki, S., Wakiyama, T., Anayama, T., and Takahashi, M.: Magnetic anisotropy induced by magnetic annealing and cold rolling for Co and Co–Ni alloys. I. Experimental. J. Phys. Soc. Jpn. 47, 11101116 (1979).Google Scholar
Takahashi, M., Kadowaki, S., Wakiyama, T., Anayama, T., and Takahashi, M.: Magnetic anisotropy induced by magnetic annealing and cold rolling for Co and Co–Ni alloys II. Analysis by a statistical model. J. Phys. Soc. Jpn. 47, 11171124 (1979).Google Scholar
Takahashi, M., Kadowaki, S., Wakiyama, T., Anayama, T., and Takahashi, M.: Magnetocrystalline anisotropy of Co and CoNi alloys. J. Phys. Soc. Jpn. 44, 825832 (1978).Google Scholar
Wakiyama, T., Wolfe, H.C., Graham, C.D., and Rhyne, J.J.: Magnetic and crystalline properties of hexagonal Co–Fe alloys. AIP Conf. Proc. 921, 921940 (1973).Google Scholar
Tanaka, T., Takahashi, M., Kadowaki, S., and Wakiyama, T.: Magnetic anisotropy induced by cold rolling in Co and Co–Fe alloys. J. Appl. Phys. 69, 396 (1991).CrossRefGoogle Scholar
Takahashi, M. and Kadowaki, S.: Anomalous temperature dependence of magnetocrystalline anisotropy in dilute cobalt–iron alloys. J. Phys. Soc. Jpn. 48, 13911392 (1980).Google Scholar
Tanaka, T., Takahashi, M., and Kadowaki, S.: Induced uniaxial magnetic anisotropy and preferred orientation in Co and Co–Ni alloy by magnetic annealing. J. Appl. Phys. 84, 67686772 (1998).Google Scholar
O'Handley, R.C.: Modern Magnetic Materials (John Wiley & Sons, Inc., New York, 2000).Google Scholar
Hall, R.C.: Single crystal anisotropy and magnetostriction constants of several ferromagnetic materials including alloys of NiFe, SiFe, AlFe, CoNi, and CoFe. J. Appl. Phys. 30, 816819 (1959).Google Scholar
Chikazumi, S.: Magnetic anisotropy induced by magnetic annealing and by cold working of Ni3Fe crystal. J. Appl. Phys. 29, 346 (1958).Google Scholar
English, A.T.: Effect of ordering on rolling-induced magnetic anisotropy in FeCo–2V. J. Appl. Phys. 38, 997 (1967).Google Scholar
Takahashi, M. and Kono, T.: Magnetic anisotropy induced by magnetic and stress annealing in Co, Co–Ni, and Co–Fe alloys. Jpn. J. Appl. Phys. 17, 361369 (1978).Google Scholar
Suzuki, T. et al.: Magnetic and magneto-optic properties of thick face-centered-cubic Co single-crystal films. Appl. Phys. Lett. 64, 27362738 (1994).Google Scholar
Mori, N., Ukai, T., and Kono, S.: Ferromagnetic anisotropy of double hexagonal Co–Fe alloy. J. Phys. Soc. Jpn. 37, 12781284 (1974).Google Scholar
Takahashi, M., Wakiyama, T., Anayama, T., Takahashi, M., and Suzuki, T.: Magnetic anisotropy in Co and Co–Ni single crystals deformed by cold rolling. J. Phys. Soc. Jpn. 38, 391399 (1975).Google Scholar
Johnson, R.T. and Dragsdorf, R.D.: The martensitic transformation in cobalt. J. Appl. Phys. 38, 618626 (1967).Google Scholar
DeGraef, M. and McHenry, M.E.: Structure of Materials (Cambridge University Press, Cambridge, 2012).Google Scholar
Iglesias, J.E.: Zhdanov's rules work both ways. Acta Crystallogr., Sect. A: Found. Crystallogr. 62, 195200 (2006).Google Scholar
Neel, L.: Anisotropie magnetique superficielle et surstructures d'orientation. J. Phys. Radium 15, 225239 (1954).Google Scholar
Aas, C.J., Szunyogh, L., and Chantrell, R.W.: Effect of stacking faults on the magnetocrystalline anisotropy of hcp Co: A first-principles study. J. Phys.: Condens. Matter 25, 113 (2013).Google Scholar
Dieter, G.E.: Mechanical Metallurgy (McGraw Hill, New York, 1976).Google Scholar
McHenry, M.E., O'Handley, R.C., Dmowski, W., and Egami, T.: Magnetism in icosahedral structures (invited). J. Appl. Phys. 61, 42324236 (1987).Google Scholar
Mchenry, M.E., Eberhart, M.E., O'Handley, R.C., and Johnson, K.H.: Electronic structure and magnetism in amorphous alloys exhibiting local icosahedral order. J. Magn. Magn. Mater. 54, 279280 (1986).Google Scholar
Jones, N.J., McNerny, K.L., Wise, A.T., Sorescu, M., McHenry, M.E., and Laughlin, D.E.: Observations of oxidation mechanisms and kinetics in faceted FeCo magnetic nanoparticles. J. Appl. Phys. 107, 09A304 (2010).Google Scholar
Jones, N.J., Swaminathan, R., McHenry, M.E., and Laughlin, D.E.: Nucleation and growth model for {110}- and {111}-truncated nanoparticles. J. Mater. Res. 30, 30113019 (2015).Google Scholar
Swaminathan, R., Nuhfer, N.T., and McHenry, M.E.: 3-Dimensional morphologies of truncated ferrite nanoparticles. Microsc. Microanal. 11, 20042005 (2005).Google Scholar
Swaminathan, R., Willard, M.A., and McHenry, M.E.: Experimental observations and nucleation and growth theory of polyhedral magnetic ferrite nanoparticles synthesized using an RF plasma torch. Acta Mater. 54, 807816 (2006).Google Scholar
Barrett, C.: Structure of Metals (McGraw Hill, New York 1952).Google Scholar
Houska, C.R.: In Mater. Sci. Res., Ott, H.M. and Locke, S.R., eds.; Springer, Berlin 1965; pp. 111119.Google Scholar
Christian, J.W.: A note on deformation stacking faults in hexagonal close-packed lattices. Acta Crystallogr. 7, 415416 (1954).CrossRefGoogle Scholar
Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39, 1157 (1995).Google Scholar
Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279306 (2000).Google Scholar
Aoki, Y., Gotoh, Y., and Obi, Y.: On the phase diagram of the Co-rich Co–V alloy system. Phys. Status Solidi A 36, 149152 (1976).Google Scholar
Bertaut, E.F., Delapalme, A., and Pauthenet, R.: Rotation des spins dans le cobalt hexagonal. Solid State Commun. 1, 8184 (1963).Google Scholar
Flohrer, S., Schäfer, R., McCord, J., Roth, S., Schutlz, L., and Herzer, G.: Magnetization loss and domain refinement in nanocrystalline tape wound cores. Acta Mater. 54, 32533259 (2006).Google Scholar
Ohnuma, M., Yanai, T., Hono, K., Nakano, M., Fukunaga, H., Yoshizawa, Y., and Herzer, G.: Stress-induced magnetic and structural anisotropy of nanocrystalline Fe-based alloys. J. Appl. Phys. 108, 16 (2010).Google Scholar
Hopkinson, J.: Magnetic and other physical properties of iron at a high temperature. Philos. Trans. R. Soc., A 180, 443 (1889).Google Scholar
Mazaleyrat, F. and Varga, L.K.: Thermo-magnetic transitions in two-phase nanostructured materials. IEEE Trans. Magn. 37, 22322235 (2001).Google Scholar
Herzer, G. and Varga, L.K.: Exchange softening in nanocrystalline alloys. J. Magn. Magn. Mater. 215–216, 506512 (2000).Google Scholar
Škorvánek, I. and O'Handley, R.C.: Fine-particle magnetism in nanocrystalline FeCuNbSiB at elevated temperatures. J. Magn. Magn. Mater. 140–144, 467468 (1995).Google Scholar
Franco, V., Conde, C.F., Conde, A., Kiss, L.F., Kaptás, D., Kemény, T., and Vincze, I.: Dipole–dipole interaction in superparamagnetic nanocrystalline Fe63.5Cr10Si13.5B9Cu1Nb3 . J. Appl. Phys. 90, 15581563 (2001).Google Scholar
Franco, V., Conde, C.F., Conde, A., and Ochin, P.: Mo-containing Finemet alloys: Microstructure and magnetic properties. J. Non-Cryst. Solids 287, 366369 (2001).Google Scholar
Bedanta, S., Eimüller, T., Kleemann, W., Rhensius, J., Stromberg, F., Amaladass, E., Cardoso, S., and Freitas, P.P.: Overcoming the dipolar disorder in dense CoFe nanoparticle ensembles: Superferromagnetism. Phys. Rev. Lett. 98, 1013 (2007).Google Scholar
Michels, A., Vecchini, C., Moze, O., Suzuki, K., Cadogan, J.M., Pranzas, P.K., and Weissmüller, J.: Dipole-field induced spin disorder in a nanocomposite soft magnet. Europhys. Lett. 72, 249255 (2005).Google Scholar