No CrossRef data available.
Article contents
Strategies for the selective volume sintering of ceramics
Published online by Cambridge University Press: 07 August 2014
Abstract
The present study is dealing with the basic physics for a novel way to generate a free-formed ceramic body, not like common layer by layer, but directly by Selective Volume Sintering (SVS) in a compact block of ceramic powder. To penetrate with laser light into the volume of a ceramic powder compact it is necessary to investigate the light scattering properties of ceramic powders. Compared with polymers and metals, ceramic materials are unique as they offer a wide optical window of transparency. The optical window typically ranges from below 0.3 up to 5 µm wave length. In the present study thin layers of quartz glass (SiO2) particles have been prepared. As a function of layer thickness and the particle size, transmission and reflection spectra in a wave length range between 0.5 and 2.5 µm have been recorded. Depending on the respective particle size and by choosing a proper relation between particle size and wave length of the incident laser radiation, it is found that light can penetrate a powder compact up to a depth of a few millimeters. With an adjustment of the light absorption properties of the compact the initiation of sintering in the volume of the compact is possible.
- Type
- Articles
- Information
- Journal of Materials Research , Volume 29 , Issue 17: Focus Issue: The Materials Science of Additive Manufacturing , 14 September 2014 , pp. 2095 - 2099
- Copyright
- Copyright © Materials Research Society 2014