Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T08:01:28.247Z Has data issue: false hasContentIssue false

Stimuli responsive polymer-based strategies for polynucleotide delivery

Published online by Cambridge University Press:  24 April 2017

Metin Uz
Affiliation:
Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
Sacide Alsoy Altinkaya
Affiliation:
Department of Chemical Engineering, Izmir Institute of Technology, Izmir 35430, Turkey
Surya K. Mallapragada*
Affiliation:
Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In recent years, stimuli responsive polymer based gene delivery vehicle design for cancer treatment and treatment of other genetic disorders has received extensive attention. Early studies focusing on DNA delivery have been facilitated by functional polymers and this area has seen further growth spurred by recent gene silencing strategies developed for small RNA [i.e., small interfering RNA (siRNA) or micro RNA (miRNA)] delivery. DNA and small RNAs possess analogous properties; however, their explicit differences define the specific challenges associated with the delivery route and the design of functional materials to overcome distinct challenges. Apart from classical gene delivery, the recent advances in genome editing have revealed the necessity of new delivery devices for genome editing tools. A system involving CRISPR (clustered, regularly interspaced, short palindromic repeats) and an endonuclease CRISPR-associated protein 9 (Cas9) coupled with a short, single-guide RNA (sgRNA) has emerged as a promising tool for genome editing along with functional delivery systems. For all these nucleic acid based treatments, the internal or external physiochemical changes in the biological tissue/cells play a major role in the design of stimuli responsive delivery materials for both in vitro and in vivo applications. This review emphasizes the recent advances in the use of pH, temperature, and redox potential-responsive polymers overcoming hurdles for delivery of gene and gene editing tools for both in vitro and in vivo applications. Specifically the chapter focuses on recently proposed delivery strategies, types of delivery systems, and polymer synthesis/modification methods. The recent advances in CRISPR/Cas9-sgRNA technology and delivery are also described in a separate section. The review ends with current clinical trials, concluding remarks, and future perspectives.

Type
Invited Reviews
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Venkatesan Renugopalakrishnan

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Boulaiz, H., Marchal, J.A., Prados, J., Melguizo, C., and Aranega, A.: Non-viral and viral vectors for gene therapy. Cell. Mol. Biol. 51(1), 3 (2005).Google Scholar
Yin, H., Kanasty, R.L., Eltoukhy, A.A., Vegas, A.J., Dorkin, J.R., and Anderson, D.G.: Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15(8), 541 (2014).Google Scholar
Guo, X. and Huang, L.: Recent advances in nonviral vectors for gene delivery. Acc. Chem. Res. 45(7), 971 (2012).Google Scholar
Davis, M.E.: Non-viral gene delivery systems. Curr. Opin. Biotechnol. 13(2), 128 (2002).CrossRefGoogle ScholarPubMed
Pezzoli, D. and Candiani, G.: Non-viral gene delivery strategies for gene therapy: A “menage a trois” among nucleic acids, materials, and the biological environment stimuli-responsive gene delivery vectors. J. Nanopart. Res. 15(3), 1523 (2013).Google Scholar
Nguyen, J. and Szoka, F.C.: Nucleic acid delivery: The missing pieces of the puzzle? Acc. Chem. Res. 45(7), 1153 (2012).Google Scholar
Li, J., Wang, Y., Zhu, Y., and Oupicky, D.: Recent advances in delivery of drug-nucleic acid combinations for cancer treatment. J. Controlled Release 172(2), 589 (2013).CrossRefGoogle ScholarPubMed
Yousefi, A., Storm, G., Schiffelers, R., and Mastrobattista, E.: Trends in polymeric delivery of nucleic acids to tumors. J. Controlled Release 170(2), 209 (2013).CrossRefGoogle ScholarPubMed
Lee, Y. and Kataoka, K.: Delivery of nucleic acid drugs. In Nucleic Acid Drugs, Vol. 249 (Springer-Verlag, Berlin, 2012); p. 95.Google Scholar
Fleige, E., Quadir, M.A., and Haag, R.: Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Delivery Rev. 64(9), 866 (2012).Google Scholar
Shim, M.S. and Kwon, Y.J.: Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Delivery Rev. 64(11), 1046 (2012).Google Scholar
Onaca, O., Enea, R., Hughes, D.W., and Meier, W.: Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromol. Biosci. 9(2), 129 (2009).Google Scholar
Kelley, E.G., Albert, J.N.L., Sullivan, M.O., and Epps, T.H. III: Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem. Soc. Rev. 42(17), 7057 (2013).Google Scholar
Zha, L., Banik, B., and Alexis, F.: Stimulus responsive nanogels for drug delivery. Soft Matter 7(13), 5908 (2011).Google Scholar
Du, F-S., Wang, Y., Zhang, R., and Li, Z-C.: Intelligent nucleic acid delivery systems based on stimuli-responsive polymers. Soft Matter 6(5), 835 (2010).CrossRefGoogle Scholar
Joglekar, M. and Trewyn, B.G.: Polymer-based stimuli-responsive nanosystems for biomedical applications. Biotechnol. J. 8(8), 931 (2013).Google Scholar
Zhang, Q., Ko, N.R., and Oh, J.K.: Recent advances in stimuli-responsive degradable block copolymer micelles: Synthesis and controlled drug delivery applications. Chem. Commun. 48(61), 7542 (2012).CrossRefGoogle ScholarPubMed
Bora, R.S., Gupta, D., Mukkur, T.K.S., and Saini, K.S.: RNA interference therapeutics for cancer: Challenges and opportunities (Review). Mol. Med. Rep. 6(1), 9 (2012).Google ScholarPubMed
Resnier, P., Montier, T., Mathieu, V., Benoit, J.P., and Passirani, C.: A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials 34(27), 6429 (2013).Google Scholar
Scholz, C. and Wagner, E.: Therapeutic plasmid DNA versus siRNA delivery: Common and different tasks for synthetic carriers. J. Controlled Release 161(2), 554 (2012).Google Scholar
Wiethoff, C.M. and Middaugh, C.R.: Barriers to nonviral gene delivery. J. Pharm. Sci. 92(2), 203 (2003).CrossRefGoogle ScholarPubMed
Jones, C.H., Chen, C.K., Ravikrishnan, A., Rane, S., and Pfeifer, B.A.: Overcoming nonviral gene delivery barriers: Perspective and future. Mol. Pharm. 10(11), 4082 (2013).Google Scholar
Kwok, A. and Hart, S.L.: Comparative structural and functional studies of nanoparticle formulations for DNA and siRNA delivery. Nanomedicine 7(2), 210 (2011).Google Scholar
Ballarin-Gonzalez, B. and Howard, K.A.: Polycation-based nanoparticle delivery of RNAi therapeutics: Adverse effects and solutions. Adv. Drug Delivery Rev. 64(15), 1717 (2012).Google Scholar
Breunig, M., Hozsa, C., Lungwitz, U., Watanabe, K., Umeda, I., Kato, H., and Goepferich, A.: Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: Disulfide bonds boost intracellular release of the cargo. J. Controlled Release 130(1), 57 (2008).Google Scholar
Elbakry, A., Zaky, A., Liebkl, R., Rachel, R., Goepferich, A., and Breunig, M.: Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 9(5), 2059 (2009).CrossRefGoogle ScholarPubMed
Lee, C.C., Liu, Y., and Reineke, T.M.: General structure-activity relationship for poly(glycoamidoamine)s: The effect of amine density on cytotoxicity and DNA delivery efficiency. Bioconjugate Chem. 19(2), 428 (2008).Google Scholar
Varkouhi, A.K., Mountrichas, G., Schiffelers, R.M., Lammers, T., Storm, G., Pispas, S., and Hennink, W.E.: Polyplexes based on cationic polymers with strong nucleic acid binding properties. Eur. J. Pharm. Sci. 45(4), 459 (2012).CrossRefGoogle ScholarPubMed
Heidel, J.D. and Davis, M.E.: Clinical developments in nanotechnology for cancer therapy. Pharm. Res. 28(2), 187 (2011).Google Scholar
Jokerst, J.V., Lobovkina, T., Zare, R.N., and Gambhir, S.S.: Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6(4), 715 (2011).Google Scholar
Zhao, F., Zhao, Y., Liu, Y., Chang, X., Chen, C., and Zhao, Y.: Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7(10), 1322 (2011).Google Scholar
Mukherjee, S., Ghosh, R.N., and Maxfield, F.R.: Endocytosis. Physiol. Rev. 77(3), 759 (1997).Google Scholar
Tortorella, S. and Karagiannis, T.C.: Transferrin receptor-mediated endocytosis: A useful target for cancer therapy. J. Membr. Biol. 247(4), 291 (2014).Google Scholar
Khalil, I.A., Kogure, K., Akita, H., and Harashima, H.: Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58(1), 32 (2006).Google Scholar
Varkouhi, A.K., Scholte, M., Storm, G., and Haisma, H.J.: Endosomal escape pathways for delivery of biologicals. J. Controlled Release 151(3), 220 (2011).Google Scholar
Vicentini, F., Borgheti-Cardoso, L.N., Depieri, L.V., Mano, D.D., Abelha, T.F., Petrilli, R., and Bentley, M.: Delivery systems and local administration routes for therapeutic siRNA. Pharm. Res. 30(4), 915 (2013).CrossRefGoogle ScholarPubMed
Rizzardo, E., Chen, M., Chong, B., Moad, G., Skidmore, M., and Thang, S.H.: RAFT polymerization: Adding to the picture. Macromol. Symp. 248(1), 104 (2007).CrossRefGoogle Scholar
Chong, Y.K., Moad, G., Rizzardo, E., Skidmore, M.A., and Thang, S.H.: Reversible addition fragmentation chain transfer polymerization of methyl methacrylate in the presence of Lewis acids: An approach to stereocontrolled living radical polymerization. Macromolecules 40(26), 9262 (2007).Google Scholar
Coessens, V., Pintauer, T., and Matyjaszewski, K.: Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 26(3), 337 (2001).Google Scholar
Matyjaszewski, K. and Tsarevsky, N.V.: Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 1(4), 276 (2009).Google Scholar
Zhang, B.Q., Kanapathipillai, M., Bisso, P., and Mallapragada, S.: Novel pentablock copolymers for selective gene delivery to cancer cells. Pharm. Res. 26(3), 700 (2009).CrossRefGoogle ScholarPubMed
Beyerle, A., Merkel, O., Stoeger, T., and Kissel, T.: PEGylation affects cytotoxicity and cell-compatibility of poly(ethylene imine) for lung application: Structure-function relationships. Toxicol. Appl. Pharmacol. 242(2), 146 (2010).CrossRefGoogle ScholarPubMed
Convertine, A.J., Benoit, D.S.W., Duvall, C.L., Hoffman, A.S., and Stayton, P.S.: Development of a novel endosomolytic diblock copolymer for siRNA delivery. J. Controlled Release 133(3), 221 (2009).CrossRefGoogle ScholarPubMed
Guo, S.T., Huang, Y.Y., Wei, T., Zhang, W.D., Wang, W.W., Lin, D., Zhang, X., Kumar, A., Du, Q.A., Xing, J.F., Deng, L.D., Liang, Z.C., Wang, P.C., Dong, A.J., and Liang, X.J.: Amphiphilic and biodegradable methoxy polyethylene glycol-block-(polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate)) as an effective gene carrier. Biomaterials 32(3), 879 (2011).CrossRefGoogle Scholar
Hinton, T.M., Guerrero-Sanchez, C., Graham, J.E., Le, T., Muir, B.W., Shi, S.N., Tizard, M.L.V., Gunatillake, P.A., McLean, K.M., and Thang, S.H.: The effect of RAFT-derived cationic block copolymer structure on gene silencing efficiency. Biomaterials 33(30), 7631 (2012).Google Scholar
Merkel, O.M., Librizzi, D., Pfestroff, A., Schurrat, T., Buyens, K., Sanders, N.N., De Smedt, S.C., Behe, M., and Kissel, T.: Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: Effects on pharmacokinetics and biodistribution measured by fluorescence fluctuation spectroscopy and single photon emission computed tomography (SPECT) imaging. J. Controlled Release 138(2), 148 (2009).CrossRefGoogle ScholarPubMed
Nelson, C.E., Kintzing, J.R., Hanna, A., Shannon, J.M., Gupta, M.K., and Duvall, C.L.: Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo . ACS Nano 7, 8870 (2013).CrossRefGoogle ScholarPubMed
Patil, M.L., Zhang, M., and Minko, T.: Multifunctional triblock nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano 5(3), 1877 (2011).Google Scholar
Sun, T.M., Du, J.Z., Yan, L.F., Mao, H.Q., and Wang, J.: Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials 29(32), 4348 (2008).Google Scholar
Zheng, M.Y., Librizzi, D., Kilic, A., Liu, Y., Renz, H., Merkel, O.M., and Kissel, T.: Enhancing in vivo circulation and siRNA delivery with biodegradable polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) copolymers. Biomaterials 33(27), 6551 (2012).Google Scholar
Zhou, L., Chen, Z.F., Wang, F.F., Yang, X.Q., and Zhang, B.L.: Multifunctional triblock co-polymer mP3/4HB-b-PEG-b-lPEI for efficient intracellular siRNA delivery and gene silencing. Acta Biomater. 9(4), 6019 (2013).Google Scholar
Segura, T. and Hubbell, J.A.: Synthesis and in vitro characterization of an ABC triblock copolymer for siRNA delivery. Bioconjugate Chem. 18(3), 736 (2007).Google Scholar
Choi, S.W., Lee, S.H., Mok, H., and Park, T.G.: Multifunctional siRNA delivery system: Polyelectrolyte complex micelles of six-arm PEG conjugate of siRNA and cell penetrating peptide with crosslinked fusogenic peptide. Biotechnol. Prog. 26(1), 57 (2010).CrossRefGoogle ScholarPubMed
Lee, S.H., Kim, S.H., and Park, T.G.: Intracellular siRNA delivery system using polyelectrolyte complex micelles prepared from VEGF siRNA-PEG conjugate and cationic fusogenic peptide. Biochem. Biophys. Res. Commun. 357(2), 511 (2007).Google Scholar
Zhao, Z.X., Gao, S.Y., Wang, J.C., Chen, C.J., Zhao, E.Y., Hou, W.J., Feng, Q., Gao, L.Y., Liu, X.Y., Zhang, L.R., and Zhang, Q.: Self-assembly nanomicelles based on cationic mPEG-PLA-b-polyarginine(R-15) triblock copolymer for siRNA delivery. Biomaterials 33(28), 6793 (2012).Google Scholar
Ray, J.G., Naik, S.S., Hoff, E.A., Johnson, A.J., Ly, J.T., Easterling, C.P., Patton, D.L., and Savin, D.A.: Stimuli-responsive peptide-based ABA-triblock copolymers: Unique morphology transitions with pH. Macromol. Rapid Commun. 33(9), 819 (2012).Google Scholar
Hoyer, J. and Neundorf, I.: Peptide vectors for the nonviral delivery of nucleic acids. Acc. Chem. Res. 45(7), 1048 (2012).Google Scholar
Cantini, L., Attaway, C.C., Butler, B., Andino, L.M., Sokolosky, M.L., and Jakymiw, A.: Fusogenic-oligoarginine peptide-mediated delivery of siRNAs targeting the CIP2A oncogene into oral cancer cells. PLoS One 8(9), e73348 (2013).Google Scholar
Sakurai, Y., Hatakeyama, H., Sato, Y., Akita, H., Takayama, K., Kobayashi, S., Futaki, S., and Harashima, H.: Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA. Biomaterials 32(24), 5733 (2011).Google Scholar
Sakurai, Y., Hatakeyama, H., Akita, H., Oishi, M., Nagasaki, Y., Futaki, S., and Harashima, H.: Efficient short interference RNA delivery to tumor cells using a combination of octaarginine, GALA and tumor-specific, cleavable polyethylene glycol system. Biol. Pharm. Bull. 32(5), 928 (2009).Google Scholar
Hatakeyama, H., Ito, E., Akita, H., Oishi, M., Nagasaki, Y., Futaki, S., and Harashima, H.: A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo . J. Controlled Release 139(2), 127 (2009).Google Scholar
Lee, S., Saito, K., Lee, H.R., Lee, M.J., Shibasaki, Y., Oishi, Y., and Kim, B.S.: Hyperbranched double hydrophilic block copolymer micelles of poly(ethylene oxide) and polyglycerol for pH-responsive drug delivery. Biomacromolecules 13(4), 1190 (2012).Google Scholar
Oishi, M., Nagasaki, Y., Itaka, K., Nishiyama, N., and Kataoka, K.: Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127(6), 1624 (2005).Google Scholar
Su, J., Chen, F., Cryns, V.L., and Messersmith, P.B.: Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J. Am. Chem. Soc. 133(31), 11850 (2011).Google Scholar
Xin, Y. and Yuan, J.: Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polym. Chem. 3(11), 3045 (2012).Google Scholar
Chen, S.: Tumor-targeting Drug Delivery System of Anticancer Agent (ProQuest, New York, 2008).Google Scholar
Cheng, C., Convertine, A.J., Stayton, P.S., and Bryers, J.D.: Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials 33(28), 6868 (2012).Google Scholar
Agarwal, A., Unfer, R., and Mallapragada, S.K.: Novel cationic pentablock copolymers as non-viral vectors for gene therapy. J. Controlled Release 103(1), 245 (2005).Google Scholar
Agarwal, A., Unfer, R., and Mallapragada, S.K.: Investigation of in vitro biocompatibility of novel pentablock copolymers for gene delivery. J. Biomed. Mater. Res., Part A 81(1), 24 (2007).Google Scholar
Agarwal, A., Unfer, R.C., and Mallapragada, S.K.: Dual-role self-assembling nanoplexes for efficient gene transfection and sustained gene delivery. Biomaterials 29(5), 607 (2008).Google Scholar
Uz, M., Mallapragada, S.K., and Altinkaya, S.A.: Responsive pentablock copolymers for siRNA delivery. RSC Adv. 5(54), 43515 (2015).Google Scholar
Lin, Y.L., Jiang, G.H., Birrell, L.K., and El-Sayed, M.E.H.: Degradable, pH-sensitive, membrane-destabilizing, comb-like polymers for intracellular delivery of nucleic acids. Biomaterials 31(27), 7150 (2010).Google Scholar
Synatschke, C.V., Schallon, A., Jérôme, V., Freitag, R., and Müller, A.H.E.: Influence of polymer architecture and molecular weight of poly(2-(dimethylamino)ethyl methacrylate) polycations on transfection efficiency and cell viability in gene delivery. Biomacromolecules 12(12), 4247 (2011).Google Scholar
Qian, X., Long, L., Shi, Z., Liu, C., Qiu, M., Sheng, J., Pu, P., Yuan, X., Ren, Y., and Kang, C.: Star-branched amphiphilic PLA-b-PDMAEMA copolymers for co-delivery of miR-21 inhibitor and doxorubicin to treat glioma. Biomaterials 35(7), 2322 (2014).Google Scholar
Convertine, A.J., Diab, C., Prieve, M., Paschal, A., Hoffman, A.S., Johnson, P.H., and Stayton, P.S.: Ph-responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules 11(11), 2904 (2010).CrossRefGoogle ScholarPubMed
Ripoll, M., Neuberg, P., Kichler, A., Tounsi, N., Wagner, A., and Remy, J.S.: Ph-responsive nanometric polydiacetylenic micelles allow for efficient intracellular siRNA delivery. ACS Appl. Mater. Interfaces 8(45), 30665 (2016).Google Scholar
Lin, W.J., Yao, N., Li, H.R., Hanson, S., Han, W.Q., Wang, C., and Zhang, L.J.: Co-delivery of imiquimod and plasmid DNA via an amphiphilic pH-responsive star polymer that forms unimolecular micelles in water. Polymers 8(11), 397 (2016).Google Scholar
Kumar, V., Mondal, G., Slavik, P., Rachagani, S., Batra, S.K., and Mahato, R.I.: Codelivery of small molecule hedgehog inhibitor and miRNA for treating pancreatic cancer. Mol. Pharmaceutics 12(4), 1289 (2015).Google Scholar
Yu, H.J., Zou, Y.L., Wang, Y.G., Huang, X.N., Huang, G., Sumer, B.D., Boothman, D.A., and Gao, J.M.: Overcoming endosomal barrier by amphotericin B-Loaded dual pH-responsive PDMA-b-PDPA micelleplexes for siRNA delivery. ACS Nano 5(11), 9246 (2011).Google Scholar
Lee, E.S., Na, K., and Bae, Y.H.: Super pH-sensitive multifunctional polymeric micelle. Nano Lett. 5(2), 325 (2005).Google Scholar
Lee, E.S., Gao, Z., Kim, D., Park, K., Kwon, I.C., and Bae, Y.H.: Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. J. Controlled Release 129(3), 228 (2008).Google Scholar
Cho, W.S., Cho, M., Jeong, J., Choi, M., Han, B.S., Shin, H.S., Hong, J., Chung, B.H., Jeong, J., and Cho, M.H.: Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 245(1), 116 (2010).Google Scholar
Lee, J.S., Green, J.J., Love, K.T., Sunshine, J., Langer, R., and Anderson, D.G.: Gold, poly(beta-amino ester) nanoparticles for small interfering RNA delivery. Nano Lett. 9(6), 2402 (2009).Google Scholar
Lv, H., Zhang, S., Wang, B., Cui, S., and Yan, J.: Toxicity of cationic lipids and cationic polymers in gene delivery. J. Controlled Release 114(1), 100 (2006).Google Scholar
Fischer, D., Li, Y.X., Ahlemeyer, B., Krieglstein, J., and Kissel, T.: In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials 24(7), 1121 (2003).CrossRefGoogle ScholarPubMed
Walker, G.F., Fella, C., Pelisek, J., Fahrmeir, J., Boeckle, S., Ogris, M., and Wagner, E.: Toward synthetic viruses: Endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo . Mol. Ther. 11(3), 418 (2005).Google Scholar
Murthy, N., Campbell, J., Fausto, N., Hoffman, A.S., and Stayton, P.S.: Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. J. Controlled Release 89(3), 365 (2003).CrossRefGoogle ScholarPubMed
Lin, S., Du, F., Wang, Y., Ji, S., Liang, D., Yu, L., and Li, Z.: An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems. Biomacromolecules 9(1), 109 (2008).Google Scholar
Rozema, D.B., Lewis, D.L., Wakefield, D.H., Wong, S.C., Klein, J.J., Roesch, P.L., Bertin, S.L., Reppen, T.W., Chu, Q., Blokhin, A.V., Hagstrom, J.E., and Wolff, J.A.: Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. U. S. A. 104(32), 12982 (2007).Google Scholar
Lai, J.P., Xu, Z.Y., Tang, R.P., Ji, W.H., Wang, R., Wang, J., and Wang, C.: PEGylated block copolymers containing tertiary amine side-chains cleavable via acid-labile ortho ester linkages for pH-triggered release of DNA. Polymer 55(12), 2761 (2014).Google Scholar
Yu, M., Zhang, L., Wang, J., Tang, R.P., Yan, G.Q., Cao, Z.P., and Wang, X.: Acid-labile poly(ortho ester amino alcohols) by ring-opening polymerization for controlled DNA release and improved serum tolerance. Polymer 96, 146 (2016).Google Scholar
Jung, H., Kim, S.A., Lee, E., and Mok, H.: Linear polyethyleneimine-doxorubicin conjugate for pH-responsive synchronous delivery of drug and microRNA-34a. Macromol. Res. 23(5), 449 (2015).Google Scholar
Lee, E.S., Gao, Z., and Bae, Y.H.: Recent progress in tumor pH targeting nanotechnology. J. Controlled Release 132(3), 164 (2008).Google Scholar
Tangsangasaksri, M., Takemoto, H., Naito, M., Maeda, Y., Sueyoshi, D., Kim, H.J., Miura, Y., Ahn, J., Azuma, R., Nishiyama, N., Miyata, K., and Kataoka, K.: Sirna-loaded polyion complex micelle decorated with charge-conversional polymer tuned to undergo stepwise response to intra-tumoral and intra-endosomal pHs for exerting enhanced RNAi efficacy. Biomacromolecules 17(1), 246 (2016).Google Scholar
Fan, B., Kang, L., Chen, L., Sun, P., Jin, M., Wang, Q., Bae, Y.H., Huang, W., and Gao, Z.: Systemic siRNA delivery with a dual pH-responsive and tumor-targeted nanovector for inhibiting tumor growth and spontaneous metastasis in orthotopic murine model of breast carcinoma. Theranostics 7(2), 357 (2017).Google Scholar
Ward, M.A. and Georgiou, T.K.: Thermoresponsive polymers for biomedical applications. Polymers 3(3), 1215 (2011).Google Scholar
Zhang, W., Shi, L., Wu, K., and An, Y.: Thermoresponsive micellization of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) in water. Macromolecules 38(13), 5743 (2005).CrossRefGoogle Scholar
Schilli, C.M., Zhang, M., Rizzardo, E., Thang, S.H., Chong, Y.K., Edwards, K., Karlsson, G., and Müller, A.H.E.: A new double-responsive block copolymer synthesized via RAFT Polymerization: poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules 37(21), 7861 (2004).Google Scholar
Wei, H., Zhang, X-Z., Zhou, Y., Cheng, S-X., and Zhuo, R-X.: Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials 27(9), 2028 (2006).Google Scholar
Alexander, C.: Temperature- and pH-responsive smart polymers for gene delivery. Expert Opin. Drug Delivery 3(5), 573 (2006).Google Scholar
Talelli, M. and Hennink, W.E.: Thermosensitive polymeric micelles for targeted drug delivery. Nanomedicine 6(7), 1245 (2011).Google Scholar
Salcher, E. and Wagner, E.: Chemically programmed polymers for targeted DNA and siRNA transfection. In Nucleic Acid Transfection, Bielke, W. and Erbacher, C., eds. (Springer, Berlin Heidelberg, 2010); p. 227.Google Scholar
Mao, Z., Ma, L., Yan, J., Yan, M., Gao, C., and Shen, J.: The gene transfection efficiency of thermoresponsive N,N,N-trimethyl chitosan chloride-g-poly(N-isopropylacrylamide) copolymer. Biomaterials 28(30), 4488 (2007).Google Scholar
Oupický, D., Reschel, T., Koňák, Č., and Oupická, L.: Temperature-controlled behavior of self-assembly gene delivery vectors based on complexes of DNA with poly(l-lysine)-graft-poly(N-isopropylacrylamide). Macromolecules 36(18), 6863 (2003).CrossRefGoogle Scholar
Turk, M., Dincer, S., Yulug, I.G., and Piskin, E.: In vitro transfection of HeLa cells with temperature sensitive polycationic copolymers. J. Controlled Release 96(2), 325 (2004).Google Scholar
Turk, M., Dincer, S., and Piskin, E.: Smart and cationic poly(NIPA)/PEI block copolymers as non-viral vectors: In vitro and in vivo transfection studies. J. Tissue Eng. Regener. Med. 1(5), 377 (2007).Google Scholar
Calejo, M.T., Cardoso, A.M.S., Kjoniksen, A-L., Zhu, K., Morais, C.M., Sande, S.A., Cardoso, A.L., Pedroso de Lima, M.C., Jurado, A., and Nystroem, B.: Temperature-responsive cationic block copolymers as nanocarriers for gene delivery. Int. J. Pharm. 448(1), 105 (2013).Google Scholar
Gu, X., Wang, J., Liu, X., Zhao, D., Wang, Y., Gao, H., and Wu, G.: Temperature-responsive drug delivery systems based on polyaspartamides with isopropylamine pendant groups. Soft Matter 9(30), 7267 (2013).Google Scholar
Cooperstein, M.A. and Canavan, H.E.: Assessment of cytotoxicity of (N-isopropyl acrylamide) and poly(N-isopropyl acrylamide)-coated surfaces. Biointerphases 8(1), 19 (2013).Google Scholar
Ma, Y., Hou, S., Ji, B., Yao, Y., and Feng, X.: A novel temperature-responsive polymer as a gene vector. Macromol. Biosci. 10(2), 202 (2010).Google Scholar
Yang, J., Zhang, P., Tang, L., Sun, P., Liu, W., Sun, P., Zuo, A., and Liang, D.: Temperature-tuned DNA condensation and gene transfection by PEI-g-(PMEO(2)MA-b-PHEMA) copolymer-based nonviral vectors. Biomaterials 31(1), 144 (2010).Google Scholar
Agarwal, A., Vilensky, R., Stockdale, A., Talmon, Y., Unfer, R.C., and Mallapragada, S.K.: Colloidally stable novel copolymeric system for gene delivery in complete growth media. J. Controlled Release 121(1–2), 28 (2007).CrossRefGoogle ScholarPubMed
Zhang, B.Q. and Mallapragada, S.: The mechanism of selective transfection mediated by pentablock copolymers; part I: Investigation of cellular uptake. Acta Biomater. 7(4), 1570 (2011).Google Scholar
Zhang, B.Q. and Mallapragada, S.: The mechanism of selective transfection mediated by pentablock copolymers; part II: Nuclear entry and endosomal escape. Acta Biomater. 7(4), 1580 (2011).Google Scholar
Tachaboonyakiat, W., Ajiro, H., and Akashi, M.: Controlled DNA interpolyelectrolyte complex formation or dissociation via stimuli-responsive poly(vinylamine-co-N-vinylisobutylamide). J. Appl. Polym. Sci. 133(35), 43852 (2016).Google Scholar
Cardoso, A.M., Calejo, M.T., Morais, C.M., Cardoso, A.L., Cruz, R., Zhu, K., Pedroso de Lima, M.C., Jurado, A.S., and Nyström, B.: Application of thermoresponsive PNIPAAM-b-PAMPTMA diblock copolymers in siRNA delivery. Mol. Pharm. 11(3), 819 (2014).Google Scholar
Choi, S.H., Lee, S.H., and Park, T.G.: Temperature-sensitive pluronic/poly(ethylenimine) nanocapsules for thermally triggered disruption of intracellular endosomal compartment. Biomacromolecules 7(6), 1864 (2006).CrossRefGoogle ScholarPubMed
Lee, S.H., Choi, S.H., Kim, S.H., and Park, T.G.: Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: Swelling induced physical disruption of endosome by cold shock. J. Controlled Release 125(1), 25 (2008).Google Scholar
Yuanpei, L., Shirong, P., Wei, Z., and Zhuo, D.: Novel thermo-sensitive core–shell nanoparticles for targeted paclitaxel delivery. Nanotechnology 20(6), 065104 (2009).Google Scholar
Zintchenko, A., Ogris, M., and Wagner, E.: Temperature dependent gene expression induced by PNIPAM-based copolymers: Potential of hyperthermia in gene transfer. Bioconjugate Chem. 17(3), 766 (2006).CrossRefGoogle ScholarPubMed
Schwerdt, A., Zintchenko, A., Concia, M., Roesen, N., Fisher, K., Lindner, L.H., Issels, R., Wagner, E., and Ogris, M.: Hyperthermia-induced targeting of thermosensitive gene carriers to tumors. Hum. Gene Ther. 19(11), 1283 (2008).CrossRefGoogle ScholarPubMed
Bae, Y.H., Okano, T., and Kim, S.W.: “On-off” thermocontrol of solute transport. I. Temperature dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water. Pharm. Res. 8(4), 531 (1991).Google Scholar
Cuggino, J.C., Alvarez, C.I., Strumia, M.C., Welker, P., Licha, K., Steinhilber, D., Mutihac, R-C., and Calderon, M.: Thermosensitive nanogels based on dendritic polyglycerol and N-isopropylacrylamide for biomedical applications. Soft Matter 7(23), 11259 (2011).Google Scholar
Cai, X-J., Dong, H-Q., Xia, W-J., Wen, H-Y., Li, X-Q., Yu, J-H., Li, Y-Y., and Shi, D-L.: Glutathione-mediated shedding of PEG layers based on disulfide-linked catiomers for DNA delivery. J. Mater. Chem. 21(38), 14639 (2011).Google Scholar
York, A.W., Huang, F.Q., and McCormick, C.L.: Rational design of targeted cancer therapeutics through the multiconjugation of folate and cleavable siRNA to RAFT-synthesized (HPMA-s-APMA) copolymers. Biomacromolecules 11(2), 505 (2010).Google Scholar
Matsumoto, S., Christie, R.J., Nishiyama, N., Miyata, K., Ishii, A., Oba, M., Koyama, H., Yamasaki, Y., and Kataoka, K.: Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules 10(1), 119 (2009).Google Scholar
Christie, R.J., Miyata, K., Matsumoto, Y., Nomoto, T., Menasco, D., Lai, T.C., Pennisi, M., Osada, K., Fukushima, S., Nishiyama, N., Yamasaki, Y., and Kataoka, K.: Effect of polymer structure on micelles formed between siRNA and cationic block copolymer comprising thiols and amidines. Biomacromolecules 12(9), 3174 (2011).Google Scholar
Li, H.M., Jiang, H., Zhao, M.N., Fu, Y., and Sun, X.: Intracellular redox potential-responsive micelles based on polyethylenimine-cystamine-poly(epsilon-caprolactone) block copolymer for enhanced miR-34a delivery. Polym. Chem. 6(11), 1952 (2015).Google Scholar
Lundy, B.B., Convertine, A., Miteva, M., and Stayton, P.S.: Neutral polymeric micelles for RNA delivery. Bioconjugate Chem. 24(3), 398 (2013).Google Scholar
Zhang, T.T., Xue, X., He, D.L., and Hsieh, J.T.: A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Lett. 365(2), 156 (2015).CrossRefGoogle ScholarPubMed
Hu, Q.D., Wang, K., Sun, X., Li, Y., Fu, Q.H., Liang, T.B., and Tang, G.P.: A redox-sensitive, oligopeptide-guided, self-assembling, and efficiency-enhanced (ROSE) system for functional delivery of microRNA therapeutics for treatment of hepatocellular carcinoma. Biomaterials 104, 192 (2016).Google Scholar
Adams, J.R. and Mallapragada, S.K.: Novel atom transfer radical polymerization method to yield copper-free block copolymeric biomaterials. Macromol. Chem. Phys. 214(12), 1321 (2013).Google Scholar
Batrakova, E.V., Li, S., Vinogradov, S.V., Alakhov, V.Y., Miller, D.W., and Kabanov, A.V.: Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: Contributions of energy depletion and membrane fluidization. J. Pharmacol. Exp. Ther. 299(2), 483 (2001).Google Scholar
Determan, M.D., Cox, J.P., and Mallapragada, S.K.: Drug release from pH-responsive thermogelling pentablock copolymers. J. Biomed. Mater. Res., Part A 81(2), 326 (2007).Google Scholar
Determan, M.D., Cox, J.P., Seifert, S., Thiyagarajan, P., and Mallapragada, S.K.: Synthesis and characterization of temperature and pH-responsive pentablock copolymers. Polymer 46(18), 6933 (2005).Google Scholar
Kabanov, A.V., Batrakova, E.V., and Alakhov, V.Y.: Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Controlled Release 82(2–3), 189 (2002).Google Scholar
Zhang, B.Q., Jia, F., Fleming, M.Q., and Mallapragada, S.K.: Injectable self-assembled block copolymers for sustained gene and drug co-delivery: An in vitro study. Int. J. Pharm. 427(1), 88 (2012).Google Scholar
Zhang, B., Zhang, Y., Mallapragada, S.K., and Clapp, A.R.: Sensing polymer/DNA polyplex dissociation using quantum dot fluorophores. ACS Nano 5(1), 129 (2011).Google Scholar
Agarwal, A. and Mallapragada, S.K.: Synthetic sustained gene delivery systems. Curr. Top. Med. Chem. 8(4), 311 (2008).Google ScholarPubMed
Melik-Nubarov, N.S., Pomaz, O.O., Dorodnych, T., Badun, G.A., Ksenofontov, A.L., Schemchukova, O.B., and Arzhakov, S.A.: Interaction of tumor and normal blood cells with ethylene oxide and propylene oxide block copolymers. FEBS Lett. 446(1), 194 (1999).Google Scholar
Bao, H., Li, L., Gan, L.H., Ping, Y., Li, J., and Ravi, P.: Thermo- and pH-responsive association behavior of dual hydrophilic graft chitosan terpolymer synthesized via ATRP and click chemistry. Macromolecules 43(13), 5679 (2010).Google Scholar
Liu, X., Ni, P., He, J., and Zhang, M.: Synthesis and micellization of pH/temperature-responsive double-hydrophilic diblock copolymers polyphosphoester-block-poly[2-(dimethylamino)ethyl methacrylate] prepared via ROP and ATRP. Macromolecules 43(10), 4771 (2010).Google Scholar
Sanjoh, M., Miyata, K., Christie, R.J., Ishii, T., Maeda, Y., Pittella, F., Hiki, S., Nishiyama, N., and Kataoka, K.: Dual environment-responsive polyplex carriers for enhanced intracellular delivery of plasmid DNA. Biomacromolecules 13(11), 3641 (2012).Google Scholar
An, K., Zhao, P., Lin, C., and Liu, H.: A pH and redox dual responsive 4-arm poly(ethylene glycol)-block-poly(disulfide histamine) copolymer for non-viral gene transfection in vitro and in vivo . Int. J. Mol. Sci. 15(5), 9067 (2014).Google Scholar
Qian, J.M., Xu, M.H., Suo, A.L., Xu, W.J., Liu, T., Liu, X.F., Yao, Y., and Wang, H.J.: Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin. and Bcl-2 siRNA in breast cancer therapy. Acta Biomater. 15, 102 (2015).Google Scholar
Xu, H., Meng, F., and Zhong, Z.: Reversibly crosslinked temperature-responsive nano-sized polymersomes: Synthesis and triggered drug release. J. Mater. Chem. 19(24), 4183 (2009).Google Scholar
Wen, Y., Zhang, Z., and Li, J.: Highly efficient multifunctional supramolecular gene carrier system self-assembled from redox-sensitive and zwitterionic polymer blocks. Adv. Funct. Mater. 24(25), 3874 (2014).Google Scholar
Klaikherd, A., Nagamani, C., and Thayumanavan, S.: Multi-stimuli sensitive amphiphilic block copolymer assemblies. J. Am. Chem. Soc. 131(13), 4830 (2009).Google Scholar
Dong, J., Wang, Y., Zhang, J., Zhan, X., Zhu, S., Yang, H., and Wang, G.: Multiple stimuli-responsive polymeric micelles for controlled release. Soft Matter 9(2), 370 (2013).Google Scholar
Ma, X.O., Zhou, N.Z., Zhang, T.Z., Guo, Z.C., Hu, W.J., Zhu, C.H., Ma, D.D., and Gu, N.: In situ formation of multiple stimuli-responsive poly (methyl vinyl ether)-alt-(maleic acid)-based supramolecular hydrogels by inclusion complexation between cyclodextrin and azobenzene. RSC Adv. 6(16), 13129 (2016).Google Scholar
Cheng, R., Feng, F., Meng, F.H., Deng, C., Feijen, J., and Zhong, Z.Y.: Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Controlled Release 152(1), 2 (2011).Google Scholar
Giljohann, D.A., Seferos, D.S., Prigodich, A.E., Patel, P.C., and Mirkin, C.A.: Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc. 131(6), 2072 (2009).Google Scholar
Gunasekaran, K., Nguyen, T.H., Maynard, H.D., Davis, T.P., and Bulmus, V.: Conjugation of siRNA with comb-type PEG enhances serum stability and gene silencing efficiency. Macromol. Rapid Commun. 32(8), 654 (2011).Google Scholar
Lee, S.H., Bae, K.H., Kim, S.H., Lee, K.R., and Park, T.G.: Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm. 364(1), 94 (2008).Google Scholar
Oishi, M., Nakaogami, J., Ishii, T., and Nagasaki, Y.: Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chem. Lett. 35(9), 1046 (2006).Google Scholar
Takemoto, H., Ishii, A., Miyata, K., Nakanishi, M., Oba, M., Ishii, T., Yamasaki, Y., Nishiyama, N., and Kataoka, K.: Polyion complex stability and gene silencing efficiency with a siRNA-grafted polymer delivery system. Biomaterials 31(31), 8097 (2010).Google Scholar
Varkouhi, A.K., Verheul, R.J., Schiffelers, R.M., Lammers, T., Storm, G., and Hennink, W.E.: Gene silencing activity of siRNA polyplexes based on thiolated N,N,N-trimethylated chitosan. Bioconjugate Chem. 21(12), 2339 (2010).Google Scholar
Jo, Y-I., Suresh, B., Kim, H., and Ramakrishna, S.: CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods. Biochim. Biophys. Acta, Rev. Cancer 1856(2), 234 (2015).Google Scholar
Senis, E., Fatouros, C., Grosse, S., Wiedtke, E., Niopek, D., Mueller, A-K., Boerner, K., and Grimm, D.: CRISPR/Cas9-mediated genome engineering: An adeno-associated viral (AAV) vector toolbox. Biotechnol. J. 9(11), 1402 (2014).Google Scholar
Moore, R., Spinhirne, A., Lai, M.J., Preisser, S., Li, Y., Kang, T., and Bleris, L.: CRISPR-based self-cleaving mechanism for controllable gene delivery in human cells. Nucleic Acids Res. 43(2), 1297 (2015).Google Scholar
Platt, R.J., Chen, S., Zhou, Y., Yim, M.J., Swiech, L., Kempton, H.R., Dahlman, J.E., Parnas, O., Eisenhaure, T.M., Jovanovic, M., Graham, D.B., Jhunjhunwala, S., Heidenreich, M., Xavier, R.J., Langer, R., Anderson, D.G., Hacohen, N., Regev, A., Feng, G., Sharp, P.A., and Zhang, F.: CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2), 440 (2014).Google Scholar
LaFountaine, J.S., Fathe, K., and Smyth, H.D.C.: Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int. J. Pharm. 494(1), 180 (2015).Google Scholar
Wang, L., Li, F., Dang, L., Liang, C., Wang, C., He, B., Liu, J., Li, D., Wu, X., Xu, X., Lu, A., and Zhang, G.: In vivo delivery systems for therapeutic genome editing. Int. J. Mol. Sci. 17(5), 626 (2016).Google Scholar
Liu, J. and Shui, S.L.: Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. J. Controlled Release 244, 83 (2016).Google Scholar
Yin, J., Chen, Y., Zhang, Z.H., and Han, X.: Stimuli-responsive block copolymer-based assemblies for cargo delivery and theranostic applications. Polymers 8(7), 268 (2016).Google Scholar
Konstan, M.W., Davis, P.B., Wagener, J.S., Hilliard, K.A., Stern, R.C., Milgram, L.J., Kowalczyk, T.H., Hyatt, S.L., Fink, T.L., Gedeon, C.R., Oette, S.M., Payne, J.M., Muhammad, O., Ziady, A.G., Moen, R.C., and Cooper, M.J.: Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum. Gene Ther. 15(12), 1255 (2004).Google Scholar
Vicent, M.J., Greco, F., Nicholson, R.I., Paul, A., Griffiths, P.C., and Duncan, R.: Polymer therapeutics designed for a combination therapy of hormone-dependent cancer. Angew. Chem., Int. Ed. Engl. 44(26), 4061 (2005).Google Scholar
Matsumura, Y.: The drug discovery by nanomedicine and its clinical experience. Jpn. J. Clin. Oncol. 44(6), 515 (2014).Google Scholar
Kato, K., Chin, K., Yoshikawa, T., Yamaguchi, K., Tsuji, Y., Esaki, T., Sakai, K., Kimura, M., Hamaguchi, T., Shimada, Y., Matsumura, Y., and Ikeda, R.: Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest. New Drugs 30(4), 1621 (2012).Google Scholar
Hamaguchi, T., Matsumura, Y., Suzuki, M., Shimizu, K., Goda, R., Nakamura, I., Nakatomi, I., Yokoyama, M., Kataoka, K., and Kakizoe, T.: NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br. J. Cancer 92(7), 1240 (2005).Google Scholar
Takahashi, A., Yamamoto, Y., Yasunaga, M., Koga, Y., Kuroda, J-I., Takigahira, M., Harada, M., Saito, H., Hayashi, T., Kato, Y., Kinoshita, T., Ohkohchi, N., Hyodo, I., and Matsumura, Y.: NC-6300, an epirubicin-incorporating micelle, extends the antitumor effect and reduces the cardiotoxicity of epirubicin. Cancer Sci. 104(7), 920 (2013).Google Scholar
Harada, M., Bobe, I., Saito, H., Shibata, N., Tanaka, R., Hayashi, T., and Kato, Y.: Improved anti-tumor activity of stabilized anthracycline polymeric micelle formulation, NC-6300. Cancer Sci. 102(1), 192 (2011).Google Scholar
Bartlett, D.W. and Davis, M.E.: Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol. Bioeng. 99(4), 975 (2008).Google Scholar
Hu-Lieskovan, S., Heidel, J.D., Bartlett, D.W., Davis, M.E., and Triche, T.J.: Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 65(19), 8984 (2005).Google Scholar