Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T01:21:13.787Z Has data issue: false hasContentIssue false

Stability study of thermal cycling on organic solar cells

Published online by Cambridge University Press:  18 June 2018

Harrison Ka Hin Lee
Affiliation:
SPECIFIC, College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN, U.K.
James R. Durrant
Affiliation:
SPECIFIC, College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN, U.K.; and Department of Chemistry, Centre for Plastic Electronics, Imperial College London, London, SW7 2AZ, U.K.
Zhe Li*
Affiliation:
SPECIFIC, College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN, U.K.; and School of Engineering, Cardiff University, Cardiff, CF24 3AA, U.K.
Wing Chung Tsoi*
Affiliation:
SPECIFIC, College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN, U.K.
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

We present a side-by-side comparison of the stability of three different types of benchmark solution-processed organic solar cells (OSCs), subject to thermal cycling stress conditions. We study the in situ performance during 5 complete thermal cycles between −100 and 80 °C and find that all the device types investigated exhibit superior stability, albeit with a distinct temperature dependence of device efficiency. After applying a much harsher condition of 50 thermal cycles, we further affirm the robustness of the OSC against thermal cycling stress. Our results suggest that OSCs could be a promising candidate for applications with large variations and rapid change in the operating temperature such as outer space applications. Also, a substantial difference in the efficiency drops from high to low temperature for different systems is observed. It suggests that maintaining optimum performance with minimal variations with operating temperature is a key challenge to be addressed for such photovoltaic applications.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H., and Yan, H.: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).CrossRefGoogle ScholarPubMed
Baran, D., Ashraf, R.S., Hanifi, D.A., Abdelsamie, M., Gasparini, N., Rohr, J.A., Holliday, S., Wadsworth, A., Lockett, S., Neophytou, M., Emmott, C.J.M., Nelson, J., Brabec, C.J., Amassian, A., Salleo, A., Kirchartz, T., Durrant, J.R., and McCulloch, I.: Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363369 (2017).CrossRefGoogle ScholarPubMed
Deng, D., Zhang, Y., Zhang, J., Wang, Z., Zhu, L., Fang, J., Xia, B., Wang, Z., Lu, K., Ma, W., and Wei, Z.: Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat. Commun. 7, 13740 (2016).Google Scholar
Wan, J., Xu, X., Zhang, G., Li, Y., Feng, K., and Peng, Q.: Highly efficient halogen-free solvent processed small-molecule organic solar cells enabled by material design and device engineering. Energy Environ. Sci. 10, 17391745 (2017).CrossRefGoogle Scholar
Cui, Y., Yao, H., Gao, B., Qin, Y., Zhang, S., Yang, B., He, C., Xu, B., and Hou, J.: Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J. Am. Chem. Soc. 139, 73027309 (2017).CrossRefGoogle Scholar
Liu, J., Chen, S., Qian, D., Gautam, B., Yang, G., Zhao, J., Bergqvist, J., Zhang, F., Ma, W., Ade, H., Inganäs, O., Gundogdu, K., Gao, F., and Yan, H.: Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).CrossRefGoogle Scholar
Jørgensen, M., Norrman, K., Gevorgyan, S.A., Tromholt, T., Andreasen, B., and Krebs, F.C.: Stability of polymer solar cells. Adv. Mater. 24, 580612 (2012).CrossRefGoogle ScholarPubMed
Jørgensen, M., Norrman, K., and Krebs, F.C.: Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92, 686714 (2008).CrossRefGoogle Scholar
Kawano, K., Pacios, R., Poplavskyy, D., Nelson, J., Bradley, D.D.C., and Durrant, J.R.: Degradation of organic solar cells due to air exposure. Sol. Energy Mater. Sol. Cells 90, 35203530 (2006).CrossRefGoogle Scholar
Li, Z., Wong, H.C., Huang, Z., Zhong, H., Tan, C.H., Tsoi, W.C., Kim, J.S., Durrant, J.R., and Cabral, J.T.: Performance enhancement of fullerene-based solar cells by light processing. Nat. Commun. 4, 2227 (2013).CrossRefGoogle ScholarPubMed
Piersimoni, F., Degutis, G., Bertho, S., Vandewal, K., Spoltore, D., Vangerven, T., Drijkoningen, J., Van Bael, M.K., Hardy, A., D’Haen, J., Maes, W., Vanderzande, D., Nesladek, M., and Manca, J.: Influence of fullerene photodimerization on the PCBM crystallization in polymer: Fullerene bulk heterojunctions under thermal stress. J. Polym. Sci., Part B: Polym. Phys. 51, 12091214 (2013).CrossRefGoogle Scholar
Schroeder, B.C., Li, Z., Brady, M.A., Faria, G.C., Ashraf, R.S., Takacs, C.J., Cowart, J.S., Duong, D.T., Chiu, K.H., Tan, C-H., Cabral, J.T., Salleo, A., Chabinyc, M.L., Durrant, J.R., and McCulloch, I.: Enhancing fullerene-based solar cell lifetimes by addition of a fullerene dumbbell. Angew. Chem., Int. Ed. 53, 1287012875 (2014).CrossRefGoogle ScholarPubMed
Wong, H.C., Li, Z., Tan, C.H., Zhong, H., Huang, Z., Bronstein, H., McCulloch, I., Cabral, J.T., and Durrant, J.R.: Morphological stability and performance of polymer–fullerene solar cells under thermal stress: The impact of photoinduced PC60BM oligomerization. ACS Nano 8, 12971308 (2014).CrossRefGoogle ScholarPubMed
Kim, B.J., Miyamoto, Y., Ma, B., and Fréchet, J.M.J.: Photocrosslinkable polythiophenes for efficient, thermally stable, organic photovoltaics. Adv. Funct. Mater. 19, 22732281 (2009).CrossRefGoogle Scholar
Zhao, W., Qian, D., Zhang, S., Li, S., Inganäs, O., Gao, F., and Hou, J.: Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 47344739 (2016).CrossRefGoogle ScholarPubMed
Holliday, S., Ashraf, R.S., Wadsworth, A., Baran, D., Yousaf, S.A., Nielsen, C.B., Tan, C-H., Dimitrov, S.D., Shang, Z., Gasparini, N., Alamoudi, M., Laquai, F., Brabec, C.J., Salleo, A., Durrant, J.R., and McCulloch, I.: High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).Google Scholar
Guo, S., Brandt, C., Andreev, T., Metwalli, E., Wang, W., Perlich, J., and Müller-Buschbaum, P.: First step into space: Performance and morphological evolution of P3HT:PCBM bulk heterojunction solar cells under AM0 illumination. ACS Appl. Mater. Interfaces 6, 1790217910 (2014).CrossRefGoogle ScholarPubMed
Peters, C.H., Sachs-Quintana, I.T., Kastrop, J.P., Beaupré, S., Leclerc, M., and McGehee, M.D.: High efficiency polymer solar cells with long operating lifetimes. Adv. Energy Mater. 1, 491494 (2011).CrossRefGoogle Scholar
Li, H., He, D., Zhou, Q., Mao, P., Cao, J., Ding, L., and Wang, J.: Temperature-dependent Schottky barrier in high-performance organic solar cells. Sci. Rep. 7, 40134 (2017).Google Scholar
Gao, F., Tress, W., Wang, J., and Inganäs, O.: Temperature dependence of charge carrier generation in organic photovoltaics. Phys. Rev. Lett. 114, 128701 (2015).CrossRefGoogle ScholarPubMed
Lee, H.K.H., Wu, J., Barbe, J., Jain, S.M., Wood, S., Speller, E.M., Li, Z., Castro, F.A., Durrant, J.R., and Tsoi, W.C.: Organic photovoltaic cells—Promising indoor light harvesters for self-sustainable electronics. J. Mater. Chem. A 6, 56185626 (2018).CrossRefGoogle Scholar
McCrum, N.G., Buckley, C.P., and Bucknall, C.B.: Principles of Polymer Engineering (Oxford University Press, New York, 1997).Google Scholar
Thuan, N.V., Son, T.V., Trung, T.Q., Thao, T.T., and Dinh, N.N.: Development of laser beam diffraction technique for determination of thermal expansion coefficient of polymeric thin films. VNU Journal of Science: Mathematics – Physics 31, 2127 (2015).Google Scholar
2.3.5 Thermal Expansion. In Tables of Physical and Chemical Constants (16th edition 1995). Kay & Laby Online. Version 1.1 (2010). Available at: http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_5.html.Google Scholar
Espinosa, N., Zimmermann, Y-S., dos Reis Benatto, G.A., Lenz, M., and Krebs, F.C.: Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil. Energy Environ. Sci. 9, 16741680 (2016).CrossRefGoogle Scholar
Cardinaletti, I., Vangerven, T., Nagels, S., Cornelissen, R., Schreurs, D., Hruby, J., Vodnik, J., Devisscher, D., Kesters, J., D’Haen, J., Franquet, A., Spampinato, V., Conard, T., Maes, W., Deferme, W., and Manca, J.V.: Organic and perovskite solar cells for space applications. Sol. Energy Mater. Sol. Cells 182, 121127 (2018).CrossRefGoogle Scholar