Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T15:47:46.287Z Has data issue: false hasContentIssue false

Spontaneous growth of freestanding Ga nanoribbons from Cr2GaC surfaces

Published online by Cambridge University Press:  03 March 2011

Zheng Ming Sun*
Affiliation:
Department of Materials Science and Engineering, Drexel University,Philadelphia, Pennsylvania 19104; and National Institute of AdvancedIndustrial Science and Technology (AIST), Nagoya 463-8560, Japan
Surojit Gupta
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Haihui Ye
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Michel W. Barsoum
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Herein we report on the room-temperature spontaneous growth of Ga freestanding nanoribbons from Cr2GaC surfaces. An oxidation-based model is proposed to explain the growth of the nanostructures. The nanoribbons present a unique opportunity to study the behavior of electrons confined to two dimensions. The production of these Ga nanostructures could be the first step in the manufacture of gallium arsenide or nitride devices with enhanced characteristics for photonic, electronic, and catalytic applications.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Law, M., Sirbuly, D.J., Johnson, J.C., Goldberger, J., Saykally, R.J. and Yang, P.: Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269 (2004).CrossRefGoogle ScholarPubMed
2Kong, X. and Li, Y.: High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature. Sens. Actuators, B 105, 449 (2005).CrossRefGoogle Scholar
3Yang, L., Zhang, X., Huang, R., Zhang, G. and An, X.: Synthesis of single crystalline GaN nanoribbons on sapphire (0001) substrates. Solid State Commun. 130, 769 (2004).CrossRefGoogle Scholar
4Xiang, X., Cao, C., Huang, F., Lv, R. and Zhu, H.: Synthesis and characterization of crystalline gallium nitride nanoribbon rings. J. Cryst. Growth 263, 25 (2004).CrossRefGoogle Scholar
5Nakaya, M., Nakayama, T. and Aono, M.: Fabrication and electron-beam-induced polymerization of C60 nanoribbon. Thin Solid Films 464–465, 327 (2004).CrossRefGoogle Scholar
6Zhang, H., Zuo, M., Tan, S., Li, G., Zhang, S. and Hou, J.: Carbothermal chemical vapor deposition route to Se one-dimensional nanostructures and their optical properties. J. Phys. Chem. B 109, 10653 (2005).CrossRefGoogle Scholar
7Cao, X.B., Xie, Y., Zhang, S.Y. and Li, F.Q.: Ultrathin trigonal selenium nanoribbons developed from series-wound beads. Adv. Mater. 16, 649 (2004).CrossRefGoogle Scholar
8El-Raghy, T., Chakraborty, S. and Barsoum, M.W.: Synthesis and characterization of Hf2PbC, Zr2PbC, and M2SnC (M=Ti, Hf, Nb or Zr). J. Eur. Ceram. Soc. 20, 2619 (2000).CrossRefGoogle Scholar
9Hida, M., Sakakibara, A. and Kamiyabu, H.: Surface tension and supercooling phenomenon of liquid Ga. J. Jpn. Inst. Met. 53, 1263 (1989).CrossRefGoogle Scholar
10Liu, Z., Bando, Y., Mitome, M. and Zhan, J.: Unusual freezing and melting of gallium encapsulated in carbon nanotubes. Phys. Rev. Lett. 93, 095504-1 (2004).CrossRefGoogle ScholarPubMed
11Barsoum, M.W.: Fundamentals of Ceramics (Institute of Physics, Bristol, U.K., 2003), p. 331.CrossRefGoogle Scholar
12Regan, M.J., Tosmann, H., Pershan, P.S., Magnussen, O.M., DiMasi, E., Ocko, B.M. and Deutsch, M.: X-ray study of the oxidation of liquid-gallium surfaces. Phys. Rev. B 55, 10786 (1997).CrossRefGoogle Scholar
13Barsoum, M.W., Hoffman, E.N., Doherty, R.D., Gupta, S. and Zavaliangos, A.: Driving force and mechanism for spontaneous setal whisker formation. Phys. Rev. Lett. 93, 206104-1 (2004).CrossRefGoogle Scholar
14Sun, Z.M. and Barsoum, M.W.: Spontaneous room temperature extrusion of Pb nano-whiskers from leaded brass surfaces. J. Mater. Res. 20, 1087 (2005).CrossRefGoogle Scholar
15Lide, D.R.: CRC Handbook of Chemistry and Physics, 85th ed. (CRC Press Inc., Boca Baton, FL, 2004), pp. 150, 285.Google Scholar
16Barsoum, M.W.: The MN +1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 (2000).CrossRefGoogle Scholar