Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T14:58:40.721Z Has data issue: false hasContentIssue false

Solvothermal synthesis of a highly branched Ta-doped TiO2

Published online by Cambridge University Press:  23 September 2011

Shermin Arab
Affiliation:
Department of Electrical Engineering, University of California Riverside, Riverside, California 92521; and Materials Science and Engineering Program, University of California Riverside, Riverside, California 92521
Dongsheng Li
Affiliation:
Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92521
Nichola Kinsinger
Affiliation:
Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92521
Francisco Zaera
Affiliation:
Department of Chemistry, University of California Riverside, Riverside, California 92521
David Kisailus*
Affiliation:
Materials Science and Engineering Program, University of California Riverside, Riverside, California 92521; and Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92521
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We present a low-temperature, hydrothermal synthesis method for Ta-doped TiO2. Here, alkoxide-based precursors are mixed at low temperatures to suppress differential hydrolysis and phase separation. This method ensures homogeneous, molecular mixing of the Ta dopant with the native oxide up to a concentration of ∼2.5 at.%. X-ray diffraction and energy dispersive spectrometer analyses confirm a uniformly doped rutile TiO2. Scanning electron microscopy and transmission electron microscopy analyses reveal a highly branched structure. Optoelectronic properties of these structures were investigated using ultraviolet-visible spectroscopy and low-temperature photoluminescence.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Barnard, A.S. and Zapol, P.: Effects of particle morphology and surface hydrogenation on the phase stability of TiO2. Phys. Rev. B 70(23), 235403 (2004).CrossRefGoogle Scholar
2.Cheng, H.M., Ma, J.M., Zhao, Z.G., and Qi, L.M.: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7(4), 663 (1995).CrossRefGoogle Scholar
3.Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53 (2003).CrossRefGoogle Scholar
4.Du, J., Lai, X.Y., Yang, N.L., Zhai, J., Kisailus, D., Su, F.B., Wang, D., and Jiang, L.: Hierarchically ordered macro-mesoporous TiO2-graphene composite films: Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5, 590 (2011).CrossRefGoogle ScholarPubMed
5.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).CrossRefGoogle Scholar
6.Nowotny, M.K. and Bahnemann, D.W.: Improved photocatalytic performance of rutile TiO2. Phys. Status Solidi RRL 5(3), 92 (2011).CrossRefGoogle Scholar
7.Gratzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).CrossRefGoogle ScholarPubMed
8.Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., and Matsumura, M.: Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal., A 265, 115 (2004).Google Scholar
9.Zhou, W., Liu, Q., Zhu, Z., and Zhang, J.: Preparation and properties of vanadium-doped TiO2 photocatalysts. J. Phys D: Appl. Phys. 43, 1 (2010).CrossRefGoogle Scholar
10.Liu, X.C., Gao, F., Zhao, L.L., and Tian, C.S.: Phase transition of low-temperature sintering tungsten-doped ZnO-TiO2 ceramics. J. Mater. Sci. Mater. Electron. 18, 863 (2007).CrossRefGoogle Scholar
11.Couselo, N., Einschlag, F.S.G., Candal, R.J., and Jobbagy, M.: Tungstun doped TiO2 vs pure TiO2 photocatalysts: Effects on photobleaching kinetics and mechanism. J. Phys. Chem. C 112, 1094 (2008).Google Scholar
12.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxide. Science 293, 269 (2001).CrossRefGoogle Scholar
13.Zhang, S., Zhao, Z., Liu, C., Dong, W., Zhang, X., and Chen, W.: Study on the optical properties of Mn-doped TiO2 thin films. J. Mater. Sci. 39, 2909 (2004).CrossRefGoogle Scholar
14.Chan, K.Y.S. and Goh, G.K.L.: Hydrothermal growth of ferromagnetic Fe-doped TiO2 films. Thin Solid Films 516, 5582 (2008).CrossRefGoogle Scholar
15.Goh, G.K.L., Chan, K.Y.S., and Liu, T.: Hydrothermal epitaxy of ferromagnetic cobalt doped titanium dioxide films at 120 °C. Cryst. Eng. Comm. 13, 524 (2011).Google Scholar
16.Wang, C., Geng, A., Guo, Y., Jiang, S., and Qu, X.: Three-dimensionally ordered macroporous Ti1−xTaxO2+x/2 (x = 0.025, 0.05, and 0.075) nanoparticles: Preparation and enhanced photocatalytic activity. Mater. Lett. 60, 2711 (2006).CrossRefGoogle Scholar
17.Morgan, B.J., Scanlon, D.O., and Watson, G.W.: Small polarons in Nb- and Ta-doped rutile and anatase TiO2. J. Mater. Chem. 19, 5175 (2009).CrossRefGoogle Scholar
18.Navale, S.C., Vadivel Murugan, A., and Ravi, V.: Varistors based on Ta-doped TiO2. Ceram. Int. 33, 301 (2007).CrossRefGoogle Scholar
19.Wang, C.C. and Ying, J.Y.: Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11, 3113 (1999).CrossRefGoogle Scholar
20.Long, R. and English, N.J.: Band gap engineering of (N, Ta)-codoped TiO2: A first-principles calculation. Chem. Phys. Lett. 478, 175 (2009).CrossRefGoogle Scholar
21.Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).CrossRefGoogle ScholarPubMed
22.Kinsinger, N.M., Wong, A., Li, D., Villalobos, F., and Kisailus, D.: Nucleation and crystal growth of nanocrystalline anatase and rutile phase TiO2 from a water soluble precursor. Cryst. Growth Des. 10, 5254 (2010).CrossRefGoogle Scholar
23.Jiang, B.P., Yin, H.B., Jiang, T.S., Jiang, Y.H., Feng, H., Chen, K.M., Zhou, W.P., and Wada, Y.J.: Hydrothermal synthesis of rutile TiO2 nanoparticles using hydroxyl and carboxyl group-containing organics as modifiers. Mater. Chem. Phys. 98, 231 (2006).CrossRefGoogle Scholar
24.Bokhimi, X., Morales, A., Aguilar, M., Toledo-Antonio, J.A., and Pedraza, F.: Local order in titania polymorphs. Int. J. Hydrogen Energy 26, 1279 (2001).CrossRefGoogle Scholar
25.Mo, S.D. and Ching, W.Y.: Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase and brookite. Phys. Rev. B 51, 13023 (1995).CrossRefGoogle ScholarPubMed
26.Burdett, J.K., Hughbanks, T., Miller, G.J., Richardson, J.W., and Smith, J.V.: Structural electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium-dioxide at 15 and 295 K. J. Am. Chem. Soc. 109, 3639 (1987).CrossRefGoogle Scholar
27.Yang, Y., Miller, D.J., and Hawthorne, S.B.: Toluene solubility in water and organic partitioning from gasoline and diesel fuel into water at elevated temperatures and pressures. J. Chem. Eng. Data 42, 908 (1997).CrossRefGoogle Scholar
28.Livage, J. and Sanchez, C.: Sol-gel chemistry. J. Non-Cryst. Solids 145, 11 (1992).CrossRefGoogle Scholar
29.Remington: The Science and Practice of Pharmacy (Philadelphia: Lippincott Williams & Wilkins, 2005).Google Scholar
30.Netterfield, R.P., Martin, P.J., Pacey, C.G., Sainty, W.G., Mckenzie, D.R., and Auchterlonie, G.: Ion-assisted deposition of mixed TiO2–SiO2 films. J. Appl. Phys. 66, 1805 (1989).CrossRefGoogle Scholar
31.Fierro, J.L.G., Arrua, L.A., Nieto, J.M.L., and Kremenic, G.: Surface properties of Co-precipitated V–Ti–O catalysts and their relation to the selective oxidation of isobutene. Appl. Catal. 37, 323 (1988).CrossRefGoogle Scholar
32.Siemens Meyer, T. and Schultze, J.W.: XPS and UPS studies of gas-phase oxidation, electrochemistry and corrosion behavior of Ti and Ti5Ta. Surf. Interface Anal. 16, 309 (1990).CrossRefGoogle Scholar
33.Ho, S.F., Contarini, S., and Rabalais, J.W.: Ion-beam induced chemical changes in oxyanions (Moyn) and oxides (Max) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum. J. Phys. Chem. 91, 4779 (1987).CrossRefGoogle Scholar
34.Granasy, L., Pusztai, T., Tegze, G., Warren, J.A., and Douglas, J.F.: Growth and form of spherulites. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 72, 011605 (2005).CrossRefGoogle ScholarPubMed
35.Keith, H.D. and Padden, F.J.: A phenomenological theory of spherulitic crystallization. J. Appl. Phys. 34, 2409 (1963).CrossRefGoogle Scholar
36.Shen, L., Bao, N., Zheng, Y., Gupta, A., An, T., and Yanagisawa, K.: Hydrothermal splitting of titanate fibers to single-crystalline TiO2 nanostructures with controllable crystalline phase, morphology, microstructure, and photocatalytic activity. J. Phys. Chem. C 112, 8809 (2008).CrossRefGoogle Scholar
37.Sanchez, C., Livage, J., Henry, M., and Babonneau, F.: Chemical modification of alkoxide precursors. J. Non-Cryst. Solids 100, 65 (1988).CrossRefGoogle Scholar
38.Ma, B., Goh, G.K.L., Ma, J., and White, T.J.: Growth kinetics and cracking of liquid-phase-deposited anatase films. J. Electrochem. Soc. 154(10), 557 (2007).CrossRefGoogle Scholar