Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T11:07:54.021Z Has data issue: false hasContentIssue false

Solution synthesis and novel magnetic properties of ball-chain iron nanofibers

Published online by Cambridge University Press:  03 October 2011

Guoxiu Tong*
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Wenhua Wu
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
Jianguo Guan*
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Jianping Wang
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
Ji Ma
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
Jinhao Yuan
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
Sunli Wang
Affiliation:
College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

The current work describes the simple solution process of ball-chain polycrystalline Fe nanofibers with aspect ratios (λ) and diameters (D) of over 1−65 and 30−95 nm. Static magnetic and microwave electromagnetic property studies demonstrated that such properties strongly depend on the λ and D of the Fe nanofibers. As the λ and D increase, the U-shape of the saturation magnetization (Ms) reaches a maximum of 180.0 emu·g−1, owing to the cooperative action of nanoeffects and magnetic interactions, whereas the coercivity (Hc) gradually increases due to aspect ratio variations. In contrast, the change in trends of the permittivity (ε′, ε″) and the dielectric loss (tgδE) are represented as an inverted U-shape; the permeability (μ′, μ″) and magnetic loss (tgδM) increase at low-frequency ranges and decrease at high frequency ranges. Stronger absorption and broader bandwidths of Fe nanofibers compared with Fe nanoparticles are ascribed to higher dielectric losses. The prepared Fe nanofibers have high potential in light-weight and broad bandwidth microwave absorbing applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tong, G.X., Guan, J.G., Xiao, Z.D., Mou, F.Z., Wang, W., and Yan, G.Q.: In situ generated H2 bubble-engaged assembly: A one-step approach for shape-controlled growth of Fe nanostructures. Chem. Mater. 20, 3535 (2008).CrossRefGoogle Scholar
2.Tong, G.X., Wu, W.H., Hua, Q., Qiao, R., Yuan, J.H., and Qian, H.S.: Grinding speed dependence of microstructure, conductivity, and microwave electromagnetic and absorbing characteristics of the flaked Fe particles. J. Mater. Res. 26, 682 (2011).CrossRefGoogle Scholar
3.Tong, G.X., Yuan, J.H., Ma, J., Guan, J.G., Wu, W.H., Li, L.C., and Qiao, R.: Polymorphous Fe/FexOy core/shell composites: One-step oxidation preparation, composition control, and static magnetic and electromagnetic characteristics. Mater. Chem. Phys. 129, 1189 (2011).CrossRefGoogle Scholar
4.Wu, M.Z., He, H.H., Zhao, Z.S., and Yao, X.: Electromagnetic and microwave absorbing properties of iron fibre-epoxy resin composites. J. Phys. D: Appl. Phys. 33, 2398 (2000).CrossRefGoogle Scholar
5.Wu, M.Z., Zhao, Z.S., He, H.H., and Yao, X.: Preparation and microwave characteristics of magnetic iron fibers. J. Magn. Magn. Mater. 217, 89 (2000).CrossRefGoogle Scholar
6.Nie, Y., He, H.H., Zhao, Z.S., Gong, R.Z., and Yu, H.B.: Preparation, surface modification and microwave characterization of magnetic iron fibers. J. Magn. Magn. Mater. 306, 125 (2006).CrossRefGoogle Scholar
7.Li, X.C., Gong, R.Z., Nie, Y., Zhao, Z.S., and He, H.H.: Electromagnetic properties of Fe55Ni45 fibre fabricated by magnetic-field-induced thermal decomposition. Mater. Chem. Phys. 94, 408 (2005).CrossRefGoogle Scholar
8.Tong, G.X., Guan, J.G., Fan, X.A., Wang, W., and Li, W.: Influences of pyrolysis temperature on static magnetic and microwave electromagnetic properties of polycrystalline iron fibers. Acta Metall. Sin. 44, 867 (2008).Google Scholar
9.Tong, G.X., Guan, J.G., Zhang, W.Y., Zhang, W., and Dong, D.M.: Preparation of light radar absorbing materials with broad bandwidth by mixing iron nanofibers with carbonyl iron particles. Acta Metall. Sin. 44, 1001 (2008).Google Scholar
10.Zhang, X.C. and He, H.H.: The effect of the aspect of iron fiber layer on microwave reflectance. J. Huazhong Univ. Sci. Tech. 29, 14 (2001).Google Scholar
11.Chen, X.F., Zhao, B.L., and Gao, Z.P.: The calculation of the equivalent EM parameters of the single oriented iron fiber absorbing materials. J. Magn. Mater. Devices 34, 23 (2003).Google Scholar
12.Guo, Y., Qin, D.H., Ding, J.B., and Li, H.L.: Annealing and morphology effects on the Fe0.39Co0.61 nanowire arrays. Appl. Surf. Sci. 218, 106 (2003).CrossRefGoogle Scholar
13.Pierce, J.P., Plummer, E.W., and Shen, J.: Ferromagnetism in cobalt-iron alloy nanowire arrays on W(110). Appl. Phys. Lett. 81, 1890 (2002).CrossRefGoogle Scholar
14.Raposo, V., Garcia, J.M., Gonzalez, J.M., and Vazquez, M.: Long-range magnetostatic interactions in arrays of nanowires. J. Magn. Magn. Mater. 222, 227 (2000).CrossRefGoogle Scholar
15.Tong, G.X., Guan, J.G., Fan, X.A., and Song, F.H.: Controllable preparation and growth mechanism of polycrystalline iron fibers induced by carrier gas flow. Chinese J. Inorg. Chem. 24, 270 (2008).Google Scholar
16.Lee, G.H., Huh, S.H., Jeong, J.W., Kim, S.H., Choi, B.J., Kim, B., and Park, J.: Processing of ferromagnetic iron nanowire arrays. Scr. Mater. 49, 1151 (2003).CrossRefGoogle Scholar
17.Thong, J.T.L., Oon, C.H., Yeadon, M., and Zhang, W.D.: Field-emission induced growth of nanowires. Appl. Phys. Lett. 81, 4823 (2002).CrossRefGoogle Scholar
18.Napolsky, K.S., Eliseev, A.A., Knotko, A.V., Lukahsin, A.V., Vertegel, A.A., and Tretyakov, Yu.D.: Preparation of ordered magnetic iron nanowires in the mesoporous silica matrix. Mater. Sci. Eng., C 23, 151 (2003).CrossRefGoogle Scholar
19.Hofmeister, H., Huisken, F., Kohn, B., Alexandrescu, R., Cojocaru, S., Crunteanu, A., Morjan, I., and Diamandescu, L.: Filamentary iron nanostructures from laser-induced pyrolysis of iron pentacarbonyl and ethylene mixtures. Appl. Phys. A 72, 7 (2001).CrossRefGoogle Scholar
20.Kida, A., Kajiyama, H., Heike, S., Hashizume, T., and Koike, K.: Self-organized growth of Fe nanowire array on H2O/Si(100)(2×n). Appl. Phys. Lett. 75, 540 (1999).CrossRefGoogle Scholar
21.Gudiksen, M.S., Wang, J.F., and Lieber, C.M.: Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 105, 4062 (2001).CrossRefGoogle Scholar
22.Jana, N.R., Gearheart, L., and Murphy, C.J.: Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065 (2001).CrossRefGoogle Scholar
23.Wang, X.G., Pan, Y., Zhou, Z.F., Wang, B.H., Peng, B.C., andZhou, Y.C.: Preparation and magnetic property of nickel nanowire by Direct-current electrodeposition. J. Funct. Mater. 2, 209 (2008).Google Scholar
24.Aral, K.I., Kang, H.W., Ishiyama, K., Kamigaki, T., Tokunaga, I., Yanagita, S., Tonegawa, S., and Hayasaka, K.: Magnetic properties of Fe electrodeposited alumite films. IEEE Trans. Magn. 26, 2295 (1990).Google Scholar
25.Tong, G.X.: Study on gas flow/gas bubbles induced self-assembly techniques and magnetic nanostructures. PhD dissertation. Wuhan: Wuhan University of Technology 119 (2009).Google Scholar
26.Tong, G.X., Wu, W.H., Qiao, R., Yuan, J.H., Guan, J.G., and Qian, H.S.: Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe3O4 nanomaterials. J. Mater. Res. 26, 1639 (2011).CrossRefGoogle Scholar
27.Wang, C., Han, X.J., Xu, P., Wang, J.Y., Du, Y.C., Wang, X.H., Qin, W., and Zhang, T.: Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties. J. Phys. Chem. C 114, 3196 (2010).CrossRefGoogle Scholar
28.Niu, H.L., Chen, Q.W., Ning, M., Jia, Y.S., and Wang, X.J.: Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields. J. Phys. Chem. B 108, 3996 (2004).CrossRefGoogle Scholar
29.Xiao, J.J., Chao, C., Xue, D.S., and Li, F.S.: Study on magnetic properties of Fe-nanowires by micromagnetic simulation. Acta Phys. Sin. 50, 1605 (2001).CrossRefGoogle Scholar
30.Tong, G.X., Wang, W., Guan, J.G., and Zhang, Q.J.: Properties of Fe/SiO2 core-shell composite particles with different nanoshell thickness. J. Inorg. Mater. 21, 1461 (2006).Google Scholar
31.Li, Z.W., Chen, L., Ong, C.K., and Yang, Z.: Static and dynamic magnetic properties of Co2Z barium ferrite nanoparticle composites. J. Mater. Sci. 40, 719 (2005).CrossRefGoogle Scholar
32.Tong, G.X., Wu, W.H., Guan, J.G., Qian, H.S., Yuan, J.H., and Li, W.: Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: Microwave electromagnetic and absorbing properties. J. Alloy. Comp. 509, 4320 (2011).CrossRefGoogle Scholar
33.Tong, G.X., Hua, Q., Wu, W.H., Qin, M.Y., Li, L.C., and Gong, P.J.: Effect of liquid–solid ratio on the morphology, structure, conductivity, and electromagnetic characteristics of iron particles. Sci. China Technol. Sci. 54, 484 (2011).CrossRefGoogle Scholar
34.Tong, G.X., Wu, W.H., Hua, Q., Miao, Y.Q., Guan, J.G., and Qian, H.S.: Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2-18 GHz ranges. J. Alloy. Comp. 509, 451 (2011).CrossRefGoogle Scholar
35.Liu, J.R., Itoh, M., Terada, M., Horikawa, T., and Machida, K.I.: Enhanced electromagnetic wave absorption properties of Fe nanowires in gigaherz range. Appl. Phys. Lett. 91, 093101 (2007).CrossRefGoogle Scholar
36.Kim, S.S., Kim, S.T., Yoon, Y.C., and Lee, K.S.: Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J. Appl. Phys. 97, 10F905 (2005).CrossRefGoogle Scholar
37.Zhu, H., Zhang, L., Zhang, L.Z., Song, Y., Huang, Y., and Zhang, Y.M.: Electromagnetic absorption properties of Sn-filled multi-walled carbon nanotubes synthesized by pyrolyzing. Mater. Lett. 64, 227 (2010).CrossRefGoogle Scholar
38.Fan, X.A., Guan, J.G., Wang, W., and Tong, G.X.: Morphology evolution, magnetic and microwave absorption properties of nano/submicrometre iron particles obtained at different reduced temperatures. J. Phys. D: Appl. Phys. 42, 075006 (2009).CrossRefGoogle Scholar
Supplementary material: File

Tong Prime Novelty Statement

Tong Prime Novelty Statement

Download Tong Prime Novelty Statement(File)
File 25.1 KB
Supplementary material: File

Tong Research Highlight

Tong Research Highlight

Download Tong Research Highlight(File)
File 22.5 KB