Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:19:48.419Z Has data issue: false hasContentIssue false

Solid-phase regrowth of compound semiconductors by reaction-driven decomposition of intermediate phases

Published online by Cambridge University Press:  31 January 2011

T. Sands
Affiliation:
Bell Communications Research, Inc., 331 Newman Springs Road, Red Bank, New Jersey 07701-7020
E. D. Marshall
Affiliation:
Department of Electrical Engineering and Computer Sciences, University of California at San Diego, La Jolla, California 92093
L. C. Wang
Affiliation:
Department of Electrical Engineering and Computer Sciences, University of California at San Diego, La Jolla, California 92093
Get access

Abstract

The solid-phase epitaxial regrowth of a III–V compound semiconductor by a two-stage reaction between a two-layer metallization and a compound semiconductor substrate is described. The regrowth process begins with a low-temperature reaction between a metal M (e.g. Ni, Pd, or Pt) and a compound semiconductor substrate, AB, to produce an intermediate M, AB or MB, phase. A subsequent reaction at a higher temperature between an overlayer of Si, Ge, Al, or In and the intermediate phase results in the decomposition of the intermediate phase and the epitaxial regrowth of a layer of the compound semiconductor. This regrowth mechanism is verified experimentally for the specific case of the Si/Ni/GaAs system. Rutherford backscattering spectrometry and transmission electron microscopy data show that the ternary phase Nix GaAs, formed during the initial stage of the reaction, decomposes toNiSi and GaAs by reaction with the Si overlayer. The incorporation of the overlayer element into the regrown semiconductor layer is proposed as a mechanism to explain the formation of Ohmic contacts in Si/Pd/n-GaAs, In/Pd/n-GaAs, In/Pt/n-GaAs, and similar two-layer metallization systems on n-GaAs.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Christou, A., Solid-State Electron. 22, 141 (1979).CrossRefGoogle Scholar
2Ding, J., Washburn, J., Sands, T., and Keramidas, V. G., Appl. Phys. Lett. 49, 818 (1986).CrossRefGoogle Scholar
3Piotrowska, A., Guivarc'h, A., and Pelous, G., Solid-State Electron. 26, 179 (1983) and References therein.CrossRefGoogle Scholar
4Lakhani, A. A., J. Appl. Phys. 56, 1888 (1984).CrossRefGoogle Scholar
5Ogawa, M., Thin Solid Films 70, 181 (1980).CrossRefGoogle Scholar
6Lahav, A., Eizenberg, M., and Komem, Y., Mater. Res. Soc. Symp. Proc. 37, 641 (1985).CrossRefGoogle Scholar
7Sands, T., Keramidas, V. G., Washburn, J., and Gronsky, R., Appl. Phys. Lett. 48, 402 (1986).CrossRefGoogle Scholar
8Sands, T., Chang, C. C., Kaplan, A. S., Keramidas, V. G., Krishnan, K. M., and Washburn, J., Appl. Phys. Lett. 50, 1346 (1987).CrossRefGoogle Scholar
9Sands, T., Keramidas, V. G., Yu, A. J., Yu, K. M., Gronsky, R., and Washburn, J., J. Mater. Res. 2, 262 (1987).CrossRefGoogle Scholar
10Kuan, T. S., Freeouf, J. L., Batson, P. E., and Wilkie, E. L., J. Appl. Phys. 58, 1519 (1985).CrossRefGoogle Scholar
11Sands, T., Keramidas, V. G., Gronsky, R., and Washburn, J., Mater. Lett. 3, 409 (1985).CrossRefGoogle Scholar
12Sands, T., Keramidas, V. G., Gronsky, R., and Washburn, J., Thin Solid Films 136, 105 (1986).CrossRefGoogle Scholar
13Marshall, E. D., Zhang, B., Wang, L. C., Fang, F., Lau, S. S., Sands, T., Kaplan, A. S., and Kuech, T. F., paper presented at the 171st Meeting of The Electrochemical Society, Philadelphia, PA, 11 May 1987, Abstract #136.Google Scholar
14Tu, K. N. and Mayer, J. W., Thin Film—Interdiffusion and Reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W. (Wiley, New York, 1978), Chap. 10, p. 376.Google Scholar
15Doolittle, L. R., Nucl. Instrum. Methods B 9, 344 (1985).CrossRefGoogle Scholar
16Sands, T., Harbison, J. P., Chan, W. K., Schwarz, S. A., Chang, C. C., Palmstram, C. J., and Keramidas, V. G., Appl. Phys. Lett. 52, 1216 (1988).CrossRefGoogle Scholar
17Allen, L. H., Hung, L. S., Kavanagh, K. L., Phillips, J. R., Yu, A. J., and Mayer, J. W., Appl. Phys. Lett. 51, 326 (1987).CrossRefGoogle Scholar
18Marvin, D. C., Ives, N. A., and Leung, M. S., J. Appl. Phys. 58, 2659 (1985).CrossRefGoogle Scholar
19Ding, J., Washburn, J., Sands, T., and Keramidas, V. G., Inst. Phys. Conf. Ser. 83, 313 (1987).Google Scholar
20Lau, S. S. (private communication, July 1987).Google Scholar