Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T08:03:59.913Z Has data issue: false hasContentIssue false

SnO2 nano-mulberries anchored onto RGO nanosheets for lithium ion batteries

Published online by Cambridge University Press:  04 September 2019

Feilong Gong
Affiliation:
Key Laboratory of Surface and Interface Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People’s Republic of China
Mengmeng Liu
Affiliation:
Key Laboratory of Surface and Interface Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People’s Republic of China
Lihua Gong
Affiliation:
Key Laboratory of Surface and Interface Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People’s Republic of China
Dandan Li*
Affiliation:
Key Laboratory of Surface and Interface Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People’s Republic of China
Yu Li*
Affiliation:
Key Laboratory of Surface and Interface Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People’s Republic of China
Feng Li*
Affiliation:
Key Laboratory of Surface and Interface Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People’s Republic of China; and American Advanced Nanotechnology, Missouri City, Texas 77459, USA
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

Three-dimensional nano-mulberries consisting of SnO2 nanoparticles have been successfully anchored onto the surfaces of reduced graphene oxide (RGO) to construct hierarchical hybrids—SnO2@RGO with a one-pot approach. The SnO2 nano-mulberries with different amounts of RGO have been produced for optimizing their composition effect on Li storage performance. Specifically, SnO2@RGO hybrids incorporated with optimized amount of RGO nanosheets (∼20.8%) exhibit highly enhanced capacity of ∼1025 mA h/g at 0.1 A/g and a reversible capacity of 750 mA h/g over 100 cycles at 0.2 A/g. The materials also deliver much better rate performance with average specific capacity of ∼498 mA h/g at 2 A/g in comparison with that of SnO2 nano-mulberries. After cycling for 600 times at 1 A/g, the SnO2@RGO electrodes still maintain high reversible capacity of ∼602 mA h/g, corresponding to 35% of the second cycle and 133% of the 70th discharge capacity.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lu, Y., Yu, Y., and Lou, X.W.: Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4, 972 (2018).CrossRefGoogle Scholar
Raccichini, R., Varzi, A., Wei, D., and Passerini, S.: Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes. Adv. Mater. 29, 1603421 (2017).CrossRefGoogle ScholarPubMed
Yang, Y., Zhao, X., Wang, H.E., Li, M.L., Hao, C., Ji, M., Ren, S.Z., and Cao, G.Z.: Phosphorized SnO2/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance. J. Mater. Chem. A 6, 3479 (2018).CrossRefGoogle Scholar
Lou, X.W., Chen, J.S., Chen, P., and Archer, L.A.: One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chem. Mater. 21, 2868 (2009).CrossRefGoogle Scholar
Sun, L., Si, H.C., Zhang, Y.X., Shi, Y., Wang, K., Liu, J.G., and Zhang, Y.H.: Sn–SnO2 hybrid nanoclusters embedded in carbon nanotubes with enhanced electrochemical performance for advanced lithium ion batteries. J. Power Sources 415, 126 (2019).CrossRefGoogle Scholar
Zhao, Y., Wei, C., Sun, S.N., Wang, L.P., and Xu, Z.C.J.: Reserving interior void space for volume change accommodation: An example of cable-like MWNTs@SnO2@C composite for superior lithium and sodium storage. Adv. Sci. 2, 8 (2015).CrossRefGoogle ScholarPubMed
Wang, L.P., Leconte, Y., Feng, Z., Wei, C., Zhao, Y., Ma, Q., Xu, W., Bourrioux, S., Azais, P., Srinivasan, M., and Xu, Z.J.: Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: Demonstration of exceptional lithium storage properties. Adv. Mater. 29, 1603286 (2017).CrossRefGoogle ScholarPubMed
Connor, P.A. and Irvine, J.T.S.: Novel tin oxide spinel-based anodes for Li-ion batteries. J. Power Sources 97, 223 (2001).CrossRefGoogle Scholar
Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., and Miyasaka, T.: Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276, 1395 (1997).CrossRefGoogle Scholar
Mishra, K., Liu, X.C., Geppert, M., Wu, J.J., Li, J.T., Huang, L., Sun, S.G., Zhou, X.D., and Ke, F.S.: Submicro-sized Si–Ge solid solutions with high capacity and long cyclability for lithium-ion batteries. J. Mater. Res. 33, 1553 (2018).CrossRefGoogle Scholar
Gong, F., Peng, L., Liu, H., Zhang, Y., Jia, D., Fang, S., Li, F., and Li, D.: 3D core–shell MoS2 superspheres composed of oriented nanosheets with quasi molecular superlattices: Mimicked embryo formation and Li-storage properties. J. Mater. Chem. A 6, 18498 (2018).CrossRefGoogle Scholar
Gong, F., Lu, S., Peng, L., Zhou, J., Kong, J., Jia, D., and Li, F.: Hierarchical Mn2O3 microspheres in situ coated with carbon for supercapacitors with highly enhanced performances. Nanomaterials 7, 409 (2017).CrossRefGoogle ScholarPubMed
Retoux, R., Brousse, T., and Schleich, D.M.: High-resolution electron microscopy investigation of capacity fade in SnO2 electrodes for lithium-ion batteries. J. Electrochem. Soc. 146, 2472 (1999).CrossRefGoogle Scholar
Hu, R., Ouyang, Y., Liang, T., Wang, H., Liu, J., Chen, J., Yang, C., Yang, L., and Zhu, M.: Stabilizing the nanostructure of SnO2 anodes by transition metals: A route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 29, 1605006 (2017).CrossRefGoogle ScholarPubMed
Jiang, B.B., He, Y.J., Li, B., Zhao, S.Q., Wang, S., He, Y.B., and Lin, Z.Q.: Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: Anodes for cyclable lithium-ion batteries. Angew. Chem., Int. Ed. 56, 1869 (2017).CrossRefGoogle ScholarPubMed
Wang, H.G., Wu, Q., Wang, Y.H., Wang, X., Wu, L.L., Song, S.Y., and Zhang, H.J.: Molecular engineering of monodisperse SnO2 nanocrystals anchored on doped graphene with high-performance lithium/sodium-storage properties in half/full cells. Adv. Energy Mater. 9, 10 (2019).Google Scholar
Cheong, J.Y., Kim, C., Jung, J.W., Yun, T.G., Youn, D.Y., Cho, S.H., Yoon, K.R., Jang, H.Y., Song, S.W., and Kim, I.D.: Incorporation of amorphous TiO2 into one-dimensional SnO2 nanostructures as superior anodes for lithium-ion batteries. J. Power Sources 400, 485 (2018).CrossRefGoogle Scholar
Liu, M., Zhang, S., Dong, H., Chen, X., Gao, S., Sun, Y., Li, W., Xu, J., Chen, L., Yuan, A., and Lu, W.: Nano-SnO2/carbon nanotube hairball composite as a high-capacity anode material for lithium ion batteries. ACS Sustainable Chem. Eng. 7, 4195 (2019).CrossRefGoogle Scholar
Abe, J., Takahashi, K., Kawase, K., Kobayashi, Y., and Shiratori, S.: Self-standing carbon nanofiber and SnO2 nanorod composite as a high-capacity and high-rate-capability anode for lithium-ion batteries. ACS Appl. Nano Mater. 1, 2982 (2018).CrossRefGoogle Scholar
Wang, X., Cao, X.Q., Bourgeois, L., Guan, H., Chen, S.M., Zhong, Y.T., Tang, D.M., Li, H.Q., Zhai, T.Y., Li, L., Bando, Y., and Golberg, D.: N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv. Funct. Mater. 22, 2682 (2012).CrossRefGoogle Scholar
Zhang, L., Zhang, G.Q., Wu, H.B., Yu, L., and Lou, X.W.: Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv. Mater. 25, 2589 (2013).CrossRefGoogle Scholar
Yao, W.Q., Wu, S.B., Zhan, L., and Wang, Y.L.: Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries. Chem. Eng. J. 361, 329 (2019).CrossRefGoogle Scholar
Zhang, L., Wu, H.B., Yan, Y., Wang, X., and Lou, X.W.: Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ. Sci. 7, 3302 (2014).CrossRefGoogle Scholar
Min, X., Sun, B., Chen, S., Fang, M.H., Wu, X.W., Liu, Y.G., Abdelkader, A., Huang, Z.H., Liu, T., Xi, K., and Kumar, R.V.: A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 16, 597 (2019).CrossRefGoogle Scholar
Wang, Q.S., Xu, J.Q., Shen, G.Y., Guo, Y.Q., Zhao, X., Xia, Y.J., Sun, H.B., Hou, P.Y., Xie, W.H., and Xu, X.J.: Large-scale carbon framework microbelts anchoring ultrafine SnO2 nanoparticles with enhanced lithium storage properties. Electrochim. Acta 297, 879 (2019).CrossRefGoogle Scholar
Lin, J., Peng, Z.W., Xiang, C.S., Ruan, G.D., Yan, Z., Natelson, D., and Tour, J.M.: Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7, 6001 (2013).CrossRefGoogle ScholarPubMed
Huang, B., Li, X.H., Pei, Y., Li, S., Cao, X., Masse, R.C., and Cao, G.Z.: Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small 12, 1945 (2016).CrossRefGoogle ScholarPubMed
Wang, H.K. and Rogach, A.L.: Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chem. Mater. 26, 123 (2014).CrossRefGoogle Scholar
Zhao, X., Luo, M., Zhao, W.X., Xu, R.M., Liu, Y., and Shen, H.: SnO2 nanosheets anchored on a 3D bicontinuous electron and ion transport carbon network for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 10, 38006 (2018).CrossRefGoogle ScholarPubMed
Yue, L., Ge, J.J., Luo, G.X., Bian, K.T., Yin, C., Guan, R.F., Zhang, W.H., Zhou, Z., Wang, K.X., and Guo, X.F.: A facile large-scale synthesis of porous SnO2 by bronze for superior lithium storage and gas sensing properties through a wet chemical reaction strategy. J. Electron. Mater. 47, 2545 (2018).CrossRefGoogle Scholar
Hu, X.J., Wang, G., Wang, B.B., Liu, X.J., and Wang, H.: Co3Sn2/SnO2 heterostructures building double shell micro-cubes wrapped in three-dimensional graphene matrix as promising anode materials for lithium-ion and sodium-ion batteries. Chem. Eng. J. 355, 986 (2019).CrossRefGoogle Scholar
Lou, X.W., Li, C.M., and Archer, L.A.: Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 21, 2536 (2009).CrossRefGoogle Scholar
Chang, P.Y. and Doong, R.A.: Microwave-assisted synthesis of SnO2/mesoporous carbon core-satellite microspheres as anode material for high-rate lithium ion batteries. J. Alloys Compd. 775, 214 (2019).CrossRefGoogle Scholar
Deng, P., Yang, J., Li, S.Y., Fan, T.E., Wu, H.H., Mou, Y., Huang, H., Zhang, Q.B., Peng, D.L., and Qu, B.H.: High initial reversible capacity and long life of ternary SnO2–Co-carbon nanocomposite anodes for lithium-ion batteries. Nano-Micro Lett. 11, 13 (2019).CrossRefGoogle Scholar
Zhou, X., Wan, L.J., and Guo, Y.G.: Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25, 2152 (2013).CrossRefGoogle ScholarPubMed
Wang, Y-X., Lim, Y-G., Park, M-S., Chou, S-L., Kim, J.H., Liu, H-K., Dou, S-X., and Kim, Y-J.: Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A 2, 529 (2014).CrossRefGoogle Scholar
Xie, X.Q., Su, D.W., Zhang, J.Q., Chen, S.Q., Mondal, A.K., and Wang, G.X.: A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries. Nanoscale 7, 3164 (2015).CrossRefGoogle ScholarPubMed
Deng, Y.F., Fang, C.C., and Chen, G.H.: The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review. J. Power Sources 304, 81 (2016).CrossRefGoogle Scholar
Chen, J.S. and Lou, X.W.: SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 9, 1877 (2013).CrossRefGoogle Scholar
Zuo, S., Li, D., Wu, Z., Sun, Y., Lu, Q., Wang, F., Zhuo, R., Yan, D., Wang, J., and Yan, P.: SnO2/graphene oxide composite material with high rate performance applied in lithium storage capacity. Electrochim. Acta 264, 61 (2018).CrossRefGoogle Scholar
Li, Y., Meng, Q., Ma, J., Zhu, C., Cui, J., Chen, Z., Guo, Z., Zhang, T., Zhu, S., and Zhang, D.: Bioinspired carbon/SnO2 composite anodes prepared from a photonic hierarchical structure for lithium batteries. ACS Appl. Mater. Interfaces 7, 11146 (2015).CrossRefGoogle ScholarPubMed
Song, D.Y., Wang, S.S., Liu, R.Z., Jiang, J.L., Jiang, Y., Huang, S.S., Li, W.R., Chen, Z.W., and Zhao, B.: Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material. Appl. Surf. Sci. 478, 290 (2019).CrossRefGoogle Scholar
Xiao, Y., Liu, S., Li, F., Zhang, A., Zhao, J., Fang, S., and Jia, D.: 3D hierarchical Co3O4 twin-spheres with an urchin-like structure: Large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv. Funct. Mater. 22, 4052 (2012).CrossRefGoogle Scholar
Chen, H., Lu, S., Gong, F., Liu, H., and Li, F.: Stepwise splitting growth and pseudocapacitive properties of hierarchical three-dimensional Co3O4 nanobooks. Nanomater 7, 81 (2017).CrossRefGoogle ScholarPubMed
Meng, E., Zhang, M., Hu, Y., Gong, F., Zhang, L., and Li, F.: Solid-state attachments of Ag nanoparticles onto the surfaces of LiFePO4 cathode materials for Li storage with enhanced capabilities. Electrochim. Acta 265, 160 (2018).CrossRefGoogle Scholar
Sun, S.H., Meng, G.W., Zhang, G.X., Gao, T., Geng, B.Y., Zhang, L.D., and Zuo, J.: Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders. Chem. Phys. Lett. 376, 103 (2003).CrossRefGoogle Scholar
Liu, Y. and Liu, M.: Growth of aligned square-shaped SnO2 tube arrays. Adv. Funct. Mater. 15, 57 (2005).CrossRefGoogle Scholar
Noerochim, L., Wang, J-Z., Chou, S-L., Li, H-J., and Liu, H-K.: SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries. Electrochim. Acta 56, 314 (2010).CrossRefGoogle Scholar
Liang, J., Yu, X-Y., Zhou, H., Wu, H.B., Ding, S., and Lou, X.W.: Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 53, 12803 (2014).CrossRefGoogle Scholar
Li, S., Xie, W., Wang, S., Jiang, X., Peng, S., and He, D.: Facile synthesis of rGO/SnO2 composite anodes for lithium ion batteries. J. Mater. Chem. A 2, 17139 (2014).CrossRefGoogle Scholar
Li, X., Qiao, L., Li, D., Wang, X., Xie, W., and He, D.: Three-dimensional network structured alpha-Fe2O3 made from a stainless steel plate as a high-performance electrode for lithium ion batteries. J. Mater. Chem. A 1, 6400 (2013).CrossRefGoogle Scholar
Zhang, Q., Gao, Q.M., Qian, W.W., Zhang, H., Tan, Y.L., Tian, W.Q., Li, Z.Y., and Xiao, H.: Graphene-based carbon coated tin oxide as a lithium ion battery anode material with high performance. J. Mater. Chem. A 5, 19136 (2017).CrossRefGoogle Scholar
Hummers, W.S. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
Supplementary material: File

Gong et al. supplementary material

Gong et al. supplementary material

Download Gong et al. supplementary material(File)
File 1.9 MB