Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T06:08:24.678Z Has data issue: false hasContentIssue false

Small-angle neutron scattering characterization of processing/microstructure relationships in the sintering of crystalline and glassy ceramics

Published online by Cambridge University Press:  31 January 2011

G.G. Long
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
S. Krueger
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
R.A. Gerhardt
Affiliation:
Rutgers University, Piscataway, New Jersey 08855
R.A. Page
Affiliation:
Southwest Research Institute, San Antonio, Texas 78228
Get access

Abstract

Small-angle neutron scattering measurements were used to examine the pore microstructure evolution of glassy silica and polycrystalline alpha-alumina as a function of sintering. It was shown that the two major sintering mechanisms, viscous flow and surface and volume diffusion, lead to very different microstructure evolution signatures in terms of the average pore size as a function of density. However, with respect to topology, the evolution of the porosity per unit surface area as a function of density is remarkably similar in the two systems.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wignall, G. D., in Transactions of the American Crystallographic Association, edited by Schmidt, P. W. (Am. Cryst. Assoc, New York, 1983), Vol. 19.Google Scholar
2.Berk, N. F. and Hardman-Rhyne, K. A., J. Appl. Cryst. 18, 467472 (1985).CrossRefGoogle Scholar
3.Berk, N. F. and Hardman-Rhyne, K. A., J. Appl. Cryst. 21, 645651 (1988).CrossRefGoogle Scholar
4.Long, G. G. and Krueger, S., J. Appl. Cryst. 22, 539545 (1989).CrossRefGoogle Scholar
5.Krueger, S., Long, G. G., and Page, R. A., Acta Cryst. A 47, 282290 (1991).CrossRefGoogle Scholar
6.Kerch, H., Gerhardt, R. A., and Grazul, J. L., J. Am. Ceram. Soc. 73, 22282237 (1990).CrossRefGoogle Scholar
7.Kostorz, G., A Treatise on Materials Science and Technology, edited by Herman, H. (Academic Press, New York, 1979), Vol. 15, pp. 227289.Google Scholar
8.Shoup, R. D., Colloid. Interface Sci. 3, 6369 (1976).CrossRefGoogle Scholar
9.Cao, W., Gerhardt, R. A., and Wachtman, J. B., Jr., J. Am. Ceram. Soc. 71, 11031113 (1988).CrossRefGoogle Scholar
10.Scherer, G. W., J. Am. Ceram. Soc. 60, 236239 (1977).CrossRefGoogle Scholar
11.Glinka, C. J., in Neutron Scattering, A. I.P. Conf. Proc. No. 89 pp. 393397 (1981), and Glinka, C. J., Rowe, J. M., and LaRock, J. G., J. Appl. Cryst. 19, 427439 (1986).Google Scholar
12.Hardman-Rhyne, K. A. and Berk, N. F., J. Appl. Cryst. 18,473479 (1985).CrossRefGoogle Scholar
13.Long, G. G., Krueger, S., and Page, R. A., J. Am. Ceram. Soc. 74, 15781584 (1991).CrossRefGoogle Scholar
14.Guinier, A. and Fournet, G., Small-Angle Scattering of X-rays (John Wiley, New York, 1955), p. 25.Google Scholar
15.Porod, G., in Small-Angle X-ray Scattering, edited by Glatter, O. and Kratky, O. (Academic Press, New York, 1982), pp. 3536.Google Scholar
16.Rhines, F. N. and DeHoff, R. T., in Sintering and Heterogeneous Catalysis, edited by Kuczynski, G. C., Miller, A. E., and Sargent, G. A., Mater. Sci. Res. 16 (Plenum Press, New York, 1984), pp. 4961.Google Scholar
17.DeHoff, R. T., Rummel, R. A., LaBuff, H. P., and Rhynes, F. N., in Modern Developments in Metallurgy, edited by Hausner, H. H. (Plenum Press, New York, 1966), pp. 301331.Google Scholar
18.Krueger, S., Long, G. G., Black, D. R., Minor, D., Jemian, P. R., Nieman, G. W., and Page, R. A., J. Am. Ceram. Soc. (1991, in press).Google Scholar