Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T21:35:27.531Z Has data issue: false hasContentIssue false

Slow and rapid cooling of Al–Cu–Si ultrafine eutectic composites: Interplay of cooling rate and microstructure in mechanical properties

Published online by Cambridge University Press:  12 February 2019

Guilherme Lisboa de Gouveia
Affiliation:
Department of Materials Engineering, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
Rafael Kakitani
Affiliation:
Department of Manufacturing and Materials Engineering, University of Campinas UNICAMP, Campinas, SP 13083-860, Brazil
Leonardo Fernandes Gomes
Affiliation:
Department of Materials Engineering, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
Conrado Ramos Moreira Afonso
Affiliation:
Department of Materials Engineering, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
Noé Cheung
Affiliation:
Department of Manufacturing and Materials Engineering, University of Campinas UNICAMP, Campinas, SP 13083-860, Brazil
José Eduardo Spinelli*
Affiliation:
Department of Materials Engineering, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ternary Al–15 wt% Cu–7 wt% Si and Al–22 wt% Cu–7 wt% Si alloy specimens were generated by transient directional solidification (DS) and rapid solidification (RS) techniques. The microstructures are constituted by an α-Al dendritic matrix surrounded by two eutectic, that is, a binary eutectic (Si + α-Al) and a bimodal eutectic, consisting of cellular-type binary eutectic colonies (α-Al + Al2Cu) in a ternary eutectic matrix consisting of α-Al + Al2Cu + Si. The bimodal eutectic exists at cooling rates from 0.5 to 250 K/s. The secondary dendritic spacing, λ2, of the DS samples varied from 5 to 20 μm and from 10 to 18 μm for both examined alloys. The λ2 from 2.7 to 4.0 μm characterized the RS samples. Mechanical properties have been determined for various samples related to different dendritic spacing values. Based on the evaluation of the rapidly solidified microstructures, it was possible to assess the cooling rates.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).CrossRefGoogle ScholarPubMed
Park, J.M., Sohn, S.W., Kim, T.E., Kim, D.H., Kim, K.B., and Kim, W.T.: Nanostructure-dendrite composites in the Fe–Zr binary alloy system exhibiting high strength and plasticity. Scr. Mater. 57, 1153 (2007).CrossRefGoogle Scholar
Louzguine, D.V., Kato, H., and Inoue, A.: High-strength hypereutectic Ti–Fe–Co bulk alloy with good ductility. Philos. Mag. Lett. 84, 359 (2004).CrossRefGoogle Scholar
Park, J.M., Mattern, N., Kühn, U., Eckert, J., Kim, K.B., Kim, W.T., Chattopadhyay, K., and Kim, D.H.: High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity. J. Mater. Res. 24, 2605 (2009).CrossRefGoogle Scholar
Ma, E.: Nanocrystalline materials: Controlling plastic instability. Nat. Mater. 2, 7 (2003).CrossRefGoogle Scholar
Liddicoat, P.V., Liao, X.Z., Zhao, Y., Zhu, Y., Murashkin, M.Y., Lavernia, E.J., Valiev, R.Z., and Ringer, S.P.: Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1, 1 (2010).CrossRefGoogle ScholarPubMed
Wang, Y., Chen, M., Zhou, F., and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).CrossRefGoogle Scholar
Koch, C.C.: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49, 657 (2003).CrossRefGoogle Scholar
Lee, C.H., Hong, S.H., Kim, J.T., Park, H.J., Song, G.A., Park, J.M., Suh, J.Y., Seo, Y., Qian, M., and Kim, K.B.: Chemical heterogeneity-induced plasticity in Ti–Fe–Bi ultrafine eutectic alloys. Mater. Des. 60, 363 (2014).CrossRefGoogle Scholar
Reyes, R.V., Bello, T.S., Kakitani, R., Costa, T.A., Garcia, A., Cheung, N., and Spinelli, J.E.: Tensile properties and related microstructural aspects of hypereutectic Al–Si alloys directionally solidified under different melt superheats and transient heat flow conditions. Mater. Sci. Eng., A 685, 235 (2017).CrossRefGoogle Scholar
Eskin, D.G. and Katgerman, L.: Solidification phenomena related to direct chill casting of aluminium alloys: Fundamental studies and future challenges. Mater. Technol. 24, 152 (2009).CrossRefGoogle Scholar
Jackson, K.A. and Hunt, J.D.: Lamellar and rod eutectic growth. Dyn. Curved Front 236, 363 (1988).CrossRefGoogle Scholar
Jones, H.: Some effects of solidification kinetics on microstructure formation in aluminium-base alloys. Mater. Sci. Eng., A 413–414, 165 (2005).CrossRefGoogle Scholar
Mertinger, V., Szabó, G., Bárczy, P., Kovács, Á., and Czél, G.: Gravity influenced convection in Al–Ni melt. Mater. Sci. Forum 215–216, 331 (1996).CrossRefGoogle Scholar
Juarez-Hernandez, A. and Jones, H.: Growth temperature measurements and solidification microstructure selection of primary Al3Ni and eutectic in the αAl–Al3Ni. Scr. Mater. 38, 729 (1998).CrossRefGoogle Scholar
Zhuang, Y.X., Zhang, X.M., Zhu, L.H., and Hu, Z.Q.: Eutectic spacing and faults of directionally solidified Al–Al3Ni eutectic. Sci. Technol. Adv. Mater. 2, 37 (2001).CrossRefGoogle Scholar
Verissimo, N.C., Brito, C., Santos, W.L.R., Cheung, N., Spinelli, J.E., and Garcia, A.: Interconnection of Zn content, macrosegregation, dendritic growth, nature of intermetallics and hardness in directionally solidified Mg–Zn alloys. J. Alloys Compd. 662, 1 (2016).CrossRefGoogle Scholar
Kim, J.T., Lee, S.W., Hong, S.H., Park, H.J., Park, J.Y., Lee, N., Seo, Y., Wang, W.M., Park, J.M., and Kim, K.B.: Understanding the relationship between microstructure and mechanical properties of Al–Cu–Si ultrafine eutectic composites. Mater. Des. 92, 1038 (2016).CrossRefGoogle Scholar
Ramakrishnan, B.P., Lei, Q., Misra, A., and Mazumder, J.: Effect of laser surface remelting on the microstructure and properties of Al–Al2Cu–Si ternary eutectic alloy. Sci. Rep. 7, 1 (2017).CrossRefGoogle ScholarPubMed
Tiller, W.A.: Liquid Metals and Solidification (ASM, Cleveland, 1958); p. 276.Google Scholar
Silva, B.L., da Silva, V.C.E., Garcia, A., and Spinelli, J.E.: Effects of solidification thermal parameters on microstructure and mechanical properties of Sn–Bi solder alloys. J. Electron. Mater. 46, 1754 (2017).CrossRefGoogle Scholar
Bertelli, F., Freitas, E.S., Cheung, N., Arenas, M.A., Conde, A., de Damborenea, J., and Garcia, A.: Microstructure, tensile properties and wear resistance correlations on directionally solidified Al–Sn–(Cu; Si) alloys. J. Alloys Compd. 695, 3621 (2017).CrossRefGoogle Scholar
Liebermann, : Rapidly Solidified Alloys: Processes–Structures–Properties–Applications (Materials Engineering), 1st ed. (CRC Press, Boca Raton, 1993); p. 808.CrossRefGoogle Scholar
Gündüz, M. and Çadırlı, E.: Directional solidification of aluminium-copper alloys. Mater. Sci. Eng., A 327, 167 (2002).CrossRefGoogle Scholar
Çadırlı, E., Büyük, U., Engin, S., and Kaya, H.: Effect of silicon content on microstructure, mechanical and electrical properties of the directionally solidified Al-based quaternary alloys. J. Alloys Compd. 694, 471 (2017).CrossRefGoogle Scholar
Quaresma, J.M.V., Santos, C.A., and Garcia, A.: Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al–Cu alloys. Metall. Mater. Trans. A 31, 3167 (2000).CrossRefGoogle Scholar
Mondolfo, L.F.: Aluminum Alloys: Structure and Properties, 1st ed, (Butterworth-Heinemann, London, 1976); p. 513.CrossRefGoogle Scholar
Liao, H.C., Zhang, M., Bi, J.J., Ding, K., Xi, X., and Wu, S.Q.: Eutectic solidification in near-eutectic Al–Si casting alloys. J. Mater. Sci. Technol. 26, 1089 (2010).CrossRefGoogle Scholar
Tiedje, N.S., Taylor, J.A., and Easton, M.A.: Feeding and distribution of porosity in cast Al–Si alloys as function of alloy composition and modification. Metall. Mater. Trans. A 43, 4846 (2012).CrossRefGoogle Scholar
Lee, S.W., Kim, J.T., Hong, S.H., Park, H.J., Park, J.Y., Lee, N.S., Seo, Y., Suh, J.Y., Eckert, J., Kim, D.H., Park, J.M., and Kim, K.B.: Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite. Sci. Rep. 4, 1 (2014).Google ScholarPubMed
Park, J.M., Kim, K.B., Kim, D.H., Mattern, N., Li, R., Liu, G., and Eckert, J.: Multi-phase Al-based ultrafine composite with multi-scale microstructure. Intermetallics 18, 1829 (2010).CrossRefGoogle Scholar
Kurz, W. and Fisher, D.J.: Fundamentals of Solidification, 3rd ed. (Trans Tech Publications Ltd., Zurich, Switzerland, 1992); p. 93.Google Scholar
Grugel, R.N., Lograsso, T.A., and Hellawell, A.: The solidification of monotectic alloys—Microstructures and phase spacings. Metall. Trans. A 15, 1003 (1984).CrossRefGoogle Scholar
Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc., Sect. B 64, 747 (1951).CrossRefGoogle Scholar
Ghassemali, E., Riestra, M., Bogdanoff, T., Kumar, B.S., and Seifeddine, S.: Hall–Petch Equation in a Hypoeutectic Al–Si Cast Alloy: Grain Size vs. Secondary Dendrite Arm Spacing (ICTP, Cambridge, U.K., 2017); p. 17.Google Scholar
Chen, C.L., West, G.D., and Thomson, R.C.: Characterisation of intermetallic phases in multicomponent Al–Si casting alloys for engineering applications. Mater. Sci. Forum 519–521, 359 (2006).CrossRefGoogle Scholar