Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T18:34:28.873Z Has data issue: false hasContentIssue false

Size-dependent carrier dynamics and activation energy in CdTe/ZnTe quantum dots on Si substrates

Published online by Cambridge University Press:  10 May 2013

Ju Hyung Lee*
Affiliation:
Department of Physics, Yonsei University, Wonju 220-842, Republic of Korea
Jin Chul Choi
Affiliation:
Department of Physics, Yonsei University, Wonju 220-842, Republic of Korea
Hong Seok Lee*
Affiliation:
Department of Physics and Research Institute for Basic Sciences, Jeju National University, Jeju 690-756, Republic of Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We investigate the size-dependent carrier dynamics and activation energy in cadmium telluride/zinc telluride (CdTe/ZnTe) quantum dots (QDs) grown on silicon (Si) substrates. Photoluminescence (PL) spectra show that the excitonic peak corresponding to transitions from the ground electronic subband to the ground heavy-hole band in CdTe/ZnTe QDs shifts to a lower energy level with increasing CdTe thickness, owing to an increase in the size of the CdTe QDs. Time-resolved PL measurements performed to study the carrier dynamics reveal a longer exciton lifetime for CdTe/ZnTe QDs with increasing CdTe thickness on account of the reduction of the exciton oscillator strength resulting from a strong built-in electric field in the larger QDs. The activation energy of the electrons confined in the CdTe/ZnTe QDs, as obtained from the temperature-dependent PL spectra, increases with increasing CdTe thickness. These results indicate that the carrier dynamics and activation energy of CdTe/ZnTe QDs are affected by the size of the CdTe QDs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Koppens, F.H.L., Buizert, C., Tielrooij, K.J., Vink, I.T., Nowack, K.C., Meunier, T., Kouwenhoven, L.P., and Vandersypen, L.M.K.: Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766 (2006).CrossRefGoogle Scholar
Quarterman, A.H., Wilcox, K.G., Apostolopoulos, V., Mihoubi, Z., Elsmere, S.P., Farrer, I., Ritchie, D.A., and Tropper, A.: A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses. Nat. Photonics 3, 729 (2009).CrossRefGoogle Scholar
Anikeeva, P.O., Halpert, J.E., Bawendi, M.G., and Bulovic, V.: Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532 (2009).CrossRefGoogle ScholarPubMed
Lim, H., Tsao, S., Zhang, W., and Razeghi, M.: High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature. Appl. Phys. Lett. 90, 131112 (2007).CrossRefGoogle Scholar
Guimard, D., Morihara, R., Bordel, D., Tanabe, K., Wakayama, Y., Nishioka, M., and Arakawa, Y.: Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage. Appl. Phys. Lett. 96, 203507 (2010).CrossRefGoogle Scholar
Lei, W., Notthoff, C., Offer, M., Meier, C., Lorke, A., Jagadish, C., and Wieck, A.D.: Electron energy structure of self-assembled In(Ga)As nanostructures probed by capacitance-voltage spectroscopy and one-dimensional numerical simulation. J. Mater. Res. 24, 2179 (2009).CrossRefGoogle Scholar
De, A. and Pryor, C.E.: Predicted band structures of III-V semiconductors in the wurtzite phase. Phys. Rev. B 81, 155210 (2010).CrossRefGoogle Scholar
Kirmse, H., Schneider, R., Rabe, M., Neumann, W., and Henneberger, F.: Transmission electron microscopy investigation of structural properties of self-assembled CdSe/ZnSe quantum dots. Appl. Phys. Lett. 72, 1329 (1998).CrossRefGoogle Scholar
Pelekanos, N., Ding, J., Nurmikko, A.V., Luo, H., Samarth, N., and Furdyna, J.K.: Quasi-two-dimensional excitons in (Zn, Cd)Se/ZnSe quantum wells: Reduced exciton-LO-phonon coupling due to confinement effects. Phys. Rev. B 45, 6037 (1992).CrossRefGoogle ScholarPubMed
Moussaouy, A. El, Bria, D., Nougauoi, A., Charrour, R., and Bouhassoune, M.: Exciton-phonon coupled states in CdTe/Cd1-xZnxTe quantum dots. J. Appl. Phys. 93, 2906 (2003).CrossRefGoogle Scholar
Patton, B., Langbein, W., Woggon, U., Maingault, L., and Mariette, H.: Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots. Phys. Rev. B 73, 235354 (2006).CrossRefGoogle Scholar
Han, W.I., Lee, J.H., Yu, J.S., Choi, J.C., and Lee, H.S.: Carrier dynamics and activation energy of CdTe quantum dots in a CdxZn1-xTe quantum well. Appl. Phys. Lett. 99, 231908 (2011).CrossRefGoogle Scholar
Chen, Y.P., Sivananthan, S., and Faurie, J.P.: Structure of CdTe(111)B grown by MBE on misoriented Si(001). J. Electron. Mater. 22, 951 (1993).CrossRefGoogle Scholar
Smith, D.J., Tsen, S-C.Y., Chen, Y.P., Faurie, J-P., and Sivananthan, S.: Microstructure of heteroepitaxial CdTe grown on misoriented Si(001) substrates. Appl. Phys. Lett. 67, 1591 (1995).CrossRefGoogle Scholar
Marsal, L., Besombes, L., Tinjod, F., Kheng, K., Wasiela, A., Gilles, B., Rouvière, J-L., and Mariette, H.: Zero-dimensional excitons in CdTe/ZnTe nanostructures. J. Appl. Phys. 91, 4936 (2002).CrossRefGoogle Scholar
Lee, H.S., Yim, S-Y., Lee, I.W., and Kim, T.W.: Size-dependent carrier dynamics in self-assembled CdTe/ZnTe quantum dots. J. Lumin. 132, 1581 (2012).CrossRefGoogle Scholar
Woo, J.T., Song, S.H., Lee, I., Kim, T.W., Yoo, K.H., Lee, H.S., and Park, H.L.: Strain distributions and electronic subband energies of self-assembled CdTe quantum wires grown on ZnTe buffer layers. J. Appl. Phys. 106, 113530 (2009).Google Scholar
Karczewski, G., Maćkowski, S., Kutrowski, M., Wojtowicz, T., and Kossut, J.: Photoluminescence study of CdTe/ZnTe self-assembled quantum dots. Appl. Phys. Lett. 74, 3011 (1998).CrossRefGoogle Scholar
Leon, R., Kim, Y., Jagadish, C., Gai, M., Zou, J., and Cockayne, D.J.H.: Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots. Appl. Phys. Lett. 69, 1888 (1996).CrossRefGoogle Scholar
Couteau, C., Moehl, S., Tinjod, F., Gérard, J.M., Kheng, K., and Mariette, H.: Correlated photon emission from a single II-VI quantum dot. Appl. Phys. Lett. 85, 6251 (2004).CrossRefGoogle Scholar
Labeau, O., Tamarat, P., and Lounis, B.: Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 90, 257404 (2003).CrossRefGoogle ScholarPubMed
Kako, S., Miyamura, M., Tachibana, K., Hoshino, K., and Arakawa, Y.: Size-dependent radiative decay time of excitons in GaN/AlN self-assembled quantum dots. Appl. Phys. Lett. 83, 984 (2003).CrossRefGoogle Scholar
Benyoucef, M., Rastelli, A., Schmidt, O.G., Ulrich, S.M., and Michler, P.: Temperature dependent optical properties of single, hierarchically self-assembled GaAs/AlGaAs quantum dots. Nanoscale Res. Lett. 1, 172 (2006).CrossRefGoogle Scholar
Williams, E.W. and Bebb, H.B.: Semiconductors and Semimetals, Vol. 8, edited by Willardson, R.K. and Beer, A.C. (Academic Press, New York, 1992), p. 321.Google Scholar
Lee, H.S., Park, H.L., and Kim, T.W.: Dimensional structural transition in CdTe/CdxZn1-xTe nanostructures. Appl. Phys. Lett. 85, 5598 (2004).CrossRefGoogle Scholar