Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T12:52:51.806Z Has data issue: false hasContentIssue false

Size effects on thermomechanical failure of layered structure with generalized particle dynamics multiscale methods

Published online by Cambridge University Press:  07 May 2019

Jinghong Fan*
Affiliation:
International Institute of Material Multiscale Modeling (IIMMM), Atlanta, Georgia 30097, USA; and Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanoscale models are very small but involve multiple physics, multiscales, confinement, high rates, etc. These make the numerical simulation of intrinsic and extrinsic size effects difficult for the ferrite/cementite layered structure of carbon steel. In this work, a “new” simulation approach is proposed with “hypothesis” as the key to make the on-going simulation simple, physically sound, and the related atomistically based simulation productive. Using this refreshed approach, which is based on the traditional scientific philosophy, size effects that are related to interface structure and the layer thickness on failure due to thermomechanical coupling are investigated. Among interesting findings, it proves that the peak stress in the strain–stress curve as the characteristic parameter to describe the size effects on failure of thermomechanical coupling is not fully accurate, and a multiplication form of energy barrier with fast decaying function of thermal activation energy should be used in the size-dependent failure initiation criterion. This makes developing guidelines available for designing interface sizes at nanoscale.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kohlhoff, S., Gumbsch, P., and Fischmeiser, H.F.: Crack propagation in BCC crystals studied with a combined finite-element and atomistic model. Philos. Mag. A 64, 851878 (1991).CrossRefGoogle Scholar
Tadmor, E.B., Ortiz, M., and Phillips, R.: Quasi-continuum analysis of defects in solids. Philos. Mag. A 73, 1529 (1996).CrossRefGoogle Scholar
Xiao, S.P. and Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193, 1645 (2004).CrossRefGoogle Scholar
Shilkrot, L.E., Miller, R.E., and Curtin, W.A.: Multiscale plasticity modeling: Coupled atomistics and discrete dislocation mechanics. J. Mech. Phys. Solids 52, 755 (2004).CrossRefGoogle Scholar
Wagner, G.J., Jones, R.E., Templeton, J.A., and Parks, M.L.: An atomic-to-continuum coupling method for heat generation in solids. Comput. Methods Appl. Mech. Eng. 197, 33513365 (2008).CrossRefGoogle Scholar
Chen, Y.: Reformation of microscopic balance equations for multiscale materials modeling. J. Chem. Phys. 130, 134706 (2009).CrossRefGoogle Scholar
Fan, J.: Multiscale analysis across atoms/continuum by a generalized particle dynamics method. Multiscale Model. Simul. 8, 228253 (2009).CrossRefGoogle Scholar
Saether, E., Yamakov, V., and Glaessgen, E.H.: An embedded statistical method for coupling molecular dynamics and finite elements analysis. Int. J. Numer. Methods Eng. 78, 12921319 (2009).CrossRefGoogle Scholar
Fan, J.: Multiscale Analysis of Deformation and Failure of Materials (Wiley Inc., U.K., 2011).Google Scholar
Voter, A.E.: Hyperdynamics: Accelerated molecular dynamic of infrequent events. J. Chem. Phys. 112, 9559 (1997).Google Scholar
Voter, A.F.: Parallel replica method for dynamics of infrequent. Phys. Rev. B 57, R13985 (1998).CrossRefGoogle Scholar
Sorensen, M.R. and Voter, A.F.: Temperature-accelerated dynamics for infrequent events. J. Chem. Phys. 115, 9657 (2000).Google Scholar
Petez-Unzueta, A.J. and Beynon, J.H.: Microstructure and wear resistance of pearlitic rail steels. Wear 144, 172822 (1995).Google Scholar
Zhu, T., Li, J., Samanta, A., Leach, A., and Gall, K.: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).CrossRefGoogle ScholarPubMed
Zhu, T., Li, J., Samanta, A., Kim, H.G., and Suresh, S.: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. U. S. A. 104, 3131 (2007).CrossRefGoogle ScholarPubMed
Hankelman, G. and Johenson, H.: Improved tangent estimate in the nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9978 (2000).CrossRefGoogle Scholar
Brenner, D.W.: Challenges to marrying atomic and continuum modeling of materials. Curr. Opin. Solid State Mater. Sci. 17, 257262 (2017).CrossRefGoogle Scholar
Xu, S. and Chen, X.: Modeling dislocations and heat conduction in crystalline materials: Atomistic/continuum coupling approaches. Int. Mater. Rev. doi: https://doi.org/10.1080/09506608.2018.1486358.Google Scholar
Curtin, W.A. and Miller, R.E.: A perspective on atomistic-continuum multiscale modeling. Model. Simulat. Mater. Sci. Eng. 11.R33, 102635 (2017).Google Scholar
Fan, J., Stewart, R., and Xu, T.: Simulation accuracy of crack-tip parameters with extended GP methods. Eng. Fract. Mech. 170, 87106 (2017).CrossRefGoogle Scholar
Fan, H.B. and Yuen, M.M.F.: A multi-scale approach for investigation of interfacial delamination in electronic packages. Microelectron. Reliab. 50, 893899 (2010).CrossRefGoogle Scholar
Yamakov, V., Saether, E., Phillips, D.R., and Glaessgen, E.H.: Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum. J. Mech. Phys. Solids 54, 74887494 (2006).CrossRefGoogle Scholar
Yamakov, V., Saether, E., and Glaessgen, E.H.: Multiscale modeling of intergranular fracture in aluminum: Constitutive relation for interface debonding. J. Mater. Sci. 43, 74887494 (2008).CrossRefGoogle Scholar
Dandekar, C.R. and Shin, Y.C.: Molecular dynamics based cohesive zone law for describing Al–SiC interface mechanics. Composites, Part A 42, 355363 (2011).CrossRefGoogle Scholar
Dandekar, C.R. and Shin, Y.C.: Effect of porosity on the interface behavior of an Al2O3–aluminum composite: A molecular dynamics study. Compos. Sci. Technol. 71, 350356 (2011).CrossRefGoogle Scholar
Fan, J., He, L., and Stewart, R.: Concurrent and hierarchical multiscale analysis for layer-thickness effects of nanoscale coatings on interfacial stress and fracture behavior. J. Eng. Mater. Technol. 134, 031012 (2012).CrossRefGoogle Scholar
Langford, G.: Deformation of pearlite. Metall. Trans. A 8A, 861875 (1977).CrossRefGoogle Scholar
Clayton, P.: The relation between wear behavior and basic material properties for pearlitic steels. Wear 60, 7593 (1980).CrossRefGoogle Scholar
Hodson, W.H. and Preston, R.R.: Production process to yield superior rail steel. Transp. Res. Rec. 1174, 17441754 (1980).Google Scholar
Sheng, G., Fan, J., and Peng, X.: Influence of technical states and stress levels on contact fatigue life of PD3 rail steel. Acta Metall. Sin. 36, 1571160 (2000). (in Chinese).Google Scholar
Gardner, R.N. and Wilsdorf, H.G.F.: Ductile fracture initiation in pure α-Fe: Part I. Macroscopic observations of the deformation history and failure of crystals. Metall. Trans. A 11, 653658 (1980).CrossRefGoogle Scholar
Gardner, R.N. and Wilsdorf, H.G.F.: Ductile fracture initiation in pure α-Fe: Part II. Microscopic observations of an initiation mechanism. Metall. Trans. A 11, 659669 (1980).CrossRefGoogle Scholar
Park, Y.J. and Bernstein, I.M.: The process of crack initiation and effective grain size for cleavage fracture in pearlitic eutectoid steel. Metall. Trans. A 10, 16531664 (1979).CrossRefGoogle Scholar
Rosenfield, A.R., Votava, E., and Hahn, G.T.: Slip-induced crack formation in mild steel. J. ASM Trans. Quart. 61, 807815 (1968).Google Scholar
Miller, L.E. and Smith, G.C.: Tensile fractures in carbon steels. J. Iron Steel Inst. 208, 16 (1970).Google Scholar
Bower, A.F. and Johnson, K.L.: The influence strain hardening on cumulative plastic deformation in rolling and sliding contact. J. Mech. Phys. Solids 37, 471493 (1989).CrossRefGoogle Scholar
Armstrong, R.J. and Frederick, C.O.: A Mathematic Representation of the Multiaxial Baauschinger Effect; Report/RD/B/N 731; General Electricity Generating Board, London, U.K., 1966.Google Scholar
Fan, J., Gao, Z., and Zeng, X.: Cyclic plasticity across micro/meso/macroscopic scales. Proc. R. Soc. London, Ser. A 460, 14771603 (2004).CrossRefGoogle Scholar
Eshelby, J.D., Frank, F.C., and Nabbaro, F.R.N.: The equilibrium of linear arrays of dislocations. London, Edinburgh Dublin Philos. Mag. J. Sci. 42, 351364 (1951).CrossRefGoogle Scholar
Modi, O.P., Deshmukh, N., Mondal, D.P., Jha, A.K., Yegneswaran, A.H., and Khaira, H.K.: Effect of interlaminar spacing on the mechanical properties of 0.65% C steel. Mater. Charact. 46, 347352 (2001).CrossRefGoogle Scholar
Zheng, S., Capenter, J.S., McCabe, R.J., Beryerlein, I.J., and Mara, N.A.: Engineering interface structures and thermal stabilities via SPD processing, in bulk nanostructured metals. Sci. Rep. 4 (2014).Google ScholarPubMed
Guziewski, M., Coleman, S.P., and Weinberger, C.R.: Atomistic investigation into the atomic structure and energetics of the ferrite-cementite interface: The Bagaryatskii orientation. Acta Mater. 119, 184192 (2016).CrossRefGoogle Scholar
Guziewski, M., Coleman, S.P., and Weinberger, C.R.: Atomistic investigation into the mechanical properties of the ferrite-cementite interface: The Bagaryatskii orientation. Acta Mater. 144, 656665 (2018).CrossRefGoogle Scholar
Guziewski, M., Coleman, S.P., and Weinberger, C.R.: Interface energetics and structure of the pearlitic microstructure in steels: An atomistic and continuum investigation. Acta Mater. 155, 111 (2018).CrossRefGoogle Scholar
Bagaryatskii, Y.A., Nosova, G., Tagunova, T., and Kristallicheskoi, O.: Structure i prirode omega-fazy v splavakh titana s khromom. Dokl. Akad. Nauk SSSR 105, 1225 (1955).Google Scholar
Zhou, D. and Sheflet, G.: Ferrite cementite crystallography in pearlitic. Metall. Trans. A 23, 12591269 (1992).CrossRefGoogle Scholar
Zhang, M.X. and Kelly, P.: Accurate orientation relationships between ferrite and cementite in perlite. Scr. Mater., 20092015 (1997).CrossRefGoogle Scholar
Pedone, A., Malavasi, G., Menziani, M.C., Segre, U., and Cormack, A.N.: Molecular dynamics studies of stress–strain behavior of silica glass under a tensile load. Chem. Mater. 20, 43564366 (2008).CrossRefGoogle Scholar
Shackelford, J.F.: Introduction to Materials Science for Engineerings, 5th ed. (Printice Hall, New Jersey, 2000).Google Scholar
Voter, A.F., Montalenti, F., and Germann, T.C.: Extending the time scale in atomistic simulation of materials. Annu. Rev. Mater. Res. 32, 321346 (2002).CrossRefGoogle Scholar
Stukowski, A.: Structure identification methods for atomistic simulation of crystalline materials. Model. Simulat. Mater. Sci. Eng. 20, 045021 (2012).CrossRefGoogle Scholar
Dow, M.S. and Baskis, M.L.: Semiempirical quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
Baskes, M.L.: Modified embedded-atompotentials for cubic materials and inpurities. Phys. Rev. B 46, 2727 (1992).CrossRefGoogle Scholar
Tersoff, J.: New empirical model for the structural properties of silicon. Phys. Rev. Letter 56, 632 (1986).CrossRefGoogle ScholarPubMed
Hepburn, D.J. and Ackland, G.J.: Metallic-covalent interatomic potential for carbon in iron. Phys. Rev. B78, 165115 (2008).CrossRefGoogle Scholar