Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T11:09:00.693Z Has data issue: false hasContentIssue false

Size effects on material yield strength/deformation/fracturing properties

Published online by Cambridge University Press:  30 January 2019

Ronald W. Armstrong*
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effects of specimen size, Hall–Petch (H-P) grain or subgrain size, particle size plus spacing, and crack size on the yield strength, plastic deformation, and fracturing properties of crystalline materials are described on a dislocation mechanics basis. The size effects are assessed at relevant macro- and/or micro-and/or nano-scale dimensions; in the latter case, at the upper-limiting strength levels. The description is applied mostly to face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close-packed (HCP) metals but also involves grain size/particle size–dependent (composite) steel material behaviors. Competition is described for the role of dislocation pile-ups versus hole-joining mechanisms for ductile failure. Grain size–dependent microhardness and strain rate sensitivity measurements are presented for nano-grain size strengthening and grain size weakening, respectively. An intrinsic size effect is demonstrated for silicon crystal nano-indentation hardness testing, which, on microscale loading, leads to evaluation of crack size dependence and, for polycrystalline alumina, to associated H-P behavior for the fracture mechanics stress intensity.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Armstrong, R.W., Codd, I., Douthwaite, R.M., and Petch, N.J.: The plastic deformation of polycrystalline aggregates. Phil. Mag. 7, 4558 (1962).CrossRefGoogle Scholar
Armstrong, R.W.: Hall–Petch relationship in aluminum and aluminum alloys. In Encyclopedia of Aluminum and its Alloys, 1st ed., Totton, G.E., Tiryakioglu, M., and Kessler, O., eds. (Taylor & Francis Group, London, U.K., 2018); pp. 119, in print (September publication).Google Scholar
Kondo, S., Mitsuma, T., Shibata, N., and Ikuhara, Y.: Direct observation of individual dislocation interaction process with grain boundaries. Sci. Adv. 2, e1501926 (2016).CrossRefGoogle Scholar
Fleischer, R.L. and Hosford, W.F. Jr.: Easy glide and grain boundary effects in polycrystalline aluminum. Trans. TMS-AIME 221, 244247 (1961).Google Scholar
Armstrong, R.W.: On size effects in polycrystal plasticity. J. Mech. Phys. Solid. 9, 196199 (1961).CrossRefGoogle Scholar
Carreker, R.P. Jr. and Hibbard, W.R. Jr.: Tensile deformation of aluminum as a function of temperature, strain rate and grain size. Trans. TMS-AIME 209, 11571163 (1957).Google Scholar
Hansen, N.: Effect of grain size and strain on the tensile flow stress of aluminum at room temperature. Acta Metall. 25, 863869 (1977).CrossRefGoogle Scholar
Kocks, U.F.: The relation between polycrystal deformation and single-crystal deformation. In Deformation and Strength of Polycrystals, Fall Meeting of TMS-AIME, Detroit, MI, October 14, 1968, Armstrong, R.W. and Feltner, C.E., eds.; Metall. Trans., Vol. 1 (1970); pp. 11211143.Google Scholar
Hug, E., Dubos, R.A., and Keller, C.: Temperature dependence and size effects on strain hardening mechanisms in copper polycrystals. Mater. Sci. Eng., A 574, 253261 (2013).CrossRefGoogle Scholar
Keller, C., Hug, E., and Feaugas, X.: Microstructural size effects on mechanical properties of pure nickel. Int. J. Plast. 27, 635654 (2011).CrossRefGoogle Scholar
Keller, C. and Hug, E.: Kocks–Mecking analysis of the size effects on the mechanical behavior of nickel polycrystals. Int. J. Plast. 98, 106122 (2017).CrossRefGoogle Scholar
Nie, D., Lu, Z., and Zhang, K.: Grain size effect of commercial pure titanium foils on mechanical properties, fracture behaviors and constitutive models. J. Mater. Eng. Perform. 26, 12831292 (2017).Google Scholar
Gong, J. and Wilkinson, A.J.: A micro-cantilever investigation of size effect, solid-solution strengthening and second-phase strengthening for 〈a〉 prism slip in alpha-Ti. Acta Mater. 59, 59705981 (2011).CrossRefGoogle Scholar
Cordero, Z.C., Knight, B.E., and Schuh, C.A.: Six decades of the Hall–Petch effect—A survey of grain size strengthening studies on pure metals. Int. Mater. Rev. 61, 495512 (2016).CrossRefGoogle Scholar
Wagner, F., Ouarem, A., Richeton, T., and Toth, L.S.: Improving mechanical properties of CP titanium by heat treatment optimization. Adv. Eng. Mater. 20, 1700237 (2018).CrossRefGoogle Scholar
Meng, B. and Fu, M.W.: Size effects on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening. Mater. Des. 83, 400412 (2015).CrossRefGoogle Scholar
Wang, J.L., Fu, M.W., and Shi, S.Q.: Influence of size effect and stress condition on ductile fracture behavior in micro-scaled plastic deformation. Mater. Des. 131, 6980 (2017).CrossRefGoogle Scholar
Jeffries, Z.: Effect of temperature, deformation and grain size on the mechanical properties of metals. Trans. TMS-AIME 60, 474576 (1919); with discussion by C.H. Mathewson and others.Google Scholar
Armstrong, R.W.: Strength properties of ultrafine-grain metals. In Ultrafine-Grain Metals; 16th Sagamore Army Materials Research Conference, Burke, J.J. and Weiss, V., eds. (Syracuse University Press, New York, 1970); pp. 125.Google Scholar
Armstrong, R.W.: Hall–Petch analysis for nanopolycrystals. In Nanometals—Status and Perspective; 33rd Risȍ International Symposium on Materials Science, Faester, S., Hansen, N., Huang, X., Juul Jensen, D., and Ralph, B., eds. (Technical University of Denmark, Roskilde Campus, DK, 2012); pp. 181199.Google Scholar
Tsuji, N., Ito, Y., Saito, Y., and Minamino, Y.: Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893899 (2002).CrossRefGoogle Scholar
Hansen, N. and Ralph, B.: The strain and grain size dependence of the flow stress of copper. Acta Metall. 30, 411417 (1982).CrossRefGoogle Scholar
Lu, L., Chen, X., Huang, X., and Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323, 607610 (2009).CrossRefGoogle ScholarPubMed
Keller, C. and Hug, E.: Hall–Petch behavior of Ni polycrystals with a few grains per thickness. Mater. Lett. 62, 17181720 (2008).CrossRefGoogle Scholar
Torrents, A., Yang, H., and Mohamed, F.: Effect of annealing on hardness and the modulus of elasticity in bulk nanocrystalline nickel. Metall. Mater. Trans. A 41, 621630 (2010).CrossRefGoogle Scholar
Armstrong, R.W.: Hall–Petch description of nanopolycrystalline Cu, Ni, and Al strength levels and strain rate sensitivities. Phil. Mag. 96, 30973108 (2016).CrossRefGoogle Scholar
Armstrong, R.W.: Crystal engineering for mechanical strength at nano-scale dimensions. Crystals 7, 315 (2017).CrossRefGoogle Scholar
Smith, T.R., Armstrong, R.W., Hazzledine, P.M., Masamura, R.A., and Pande, C.S.: Pile-up based Hall–Petch consideration at ultra-fine grain sizes. In Grain Size and Mechanical Properties Fundamentals and Applications, Vol. 362, Otooni, M.A., Armstrong, R.W., Grant, N.J., and Ishizaki, K., eds. (Materials Research Society, Pittsburgh, PA, 1995); pp. 3137.Google Scholar
Embury, J.D. and Fisher, R.M.: The structure and properties of drawn pearlite. Acta Metall. 14, 147152 (1966).CrossRefGoogle Scholar
Jang, J.C.S. and Koch, C.C.: The Hall−Petch relationship in nanocrystalline iron produced by ball-milling. Scr. Metall. 24, 15991604 (1990).CrossRefGoogle Scholar
Jang, D. and Atzmon, M.: Grain size dependence of plastic deformation in nano-crystalline iron. J. Appl. Phys. 93, 92829286 (2003).CrossRefGoogle Scholar
Zhang, X.D., Godfrey, A., Huang, X., Hansen, N., and Liu, Q.: Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire. Acta Mater. 59, 34223430 (2011).CrossRefGoogle Scholar
Purcek, G., Saray, O., Karaman, I., and Maier, H.J.: High strength and high ductility of ultrafine-grained interstitial-free steel produced by ECAE and annealing. Metall. Mater. Trans. A 43, 18841894 (2012).CrossRefGoogle Scholar
Li, Y., Raabe, D., Herbig, M., Choi, P-P., Goto, S., Kostka, A., Yarita, H., Borchers, C., and Kirchheim, R.: Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys. Rev. Lett. 113, 106104 (2014).CrossRefGoogle ScholarPubMed
Armstrong, R.W., Bechtold, J.H., and Begley, R.T.: Mechanisms of alloy strengthening in refractory metals. In Refractory Metals and Alloys II, Vol. 17, Semchyshen, M. and Perlmutter, I., eds. (TMS-AIME Metallurgical Society Conferences; Interscience Publishers, New York, 1963); pp. 159190.Google Scholar
Ball, C.J.: The flow stress of polycrystalline aluminum. Phil. Mag. 2, 10111017 (1957).CrossRefGoogle Scholar
Leseur, D.R., Syn, C.K., and Sherby, O.D.: Nano-scale strengthening from grains, sub-grains, and particles in Fe-based alloys. J. Mater. Sci. 45, 48894894 (2010).CrossRefGoogle Scholar
Erginer, E. and Gurland, J.: Influence of composition and microstructure on strength of cast aluminum–silicon alloys. Z. Metallkd. 61, 606615 (1968).Google Scholar
Liu, C.T. and Gurland, J.: The fracture of spheroidized carbon steels. Trans. ASM 61, 156167 (1968).Google Scholar
Zheng, C., Li, L., Yang, W., and Sun, Z.: Relationship between microstructure and yield strength for plain carbon steel with ultrafine or fine (ferrite–cementite) structure. Mater. Sci. Eng., A 617, 3138 (2014).CrossRefGoogle Scholar
Armstrong, R.W.: The (cleavage) strength of pre-cracked polycrystals. In A Special Issue in Honor of Professor Takeo Yokobori, Liebowitz, H., ed.; Engineering Fracture Mechanics, Vol. 28 (1987); pp. 529538.Google Scholar
Srinivas, M., Malakondaiah, G., Armstrong, R.W., and Rama Rao, P.: Ductile fracture toughness of Armco iron of varying grain size. Acta Metall. Mater. 39, 807816 (1991).CrossRefGoogle Scholar
Petch, N.J. and Armstrong, R.W.: The tensile test. Acta Metall. Mater. 38, 26952700 (1990).CrossRefGoogle Scholar
Armstrong, R.W.: Comparison of grain size and strain rate influences on higher temperature metal strength and fracturing properties. In 14th International Congress on Fracture (ICF14), June 18–23, 2017, Rhodes, G.R., ed.; International Journal of Fracture Complex (2018); accepted for publication.Google Scholar
Tsuchida, N., Inoue, T., Nakano, H., and Okamoto, T.: Enhanced true stress–true strain relationships due to grain refinement of a low-carbon ferrite–pearlite steel. Mater. Lett. 160, 117119 (2015).CrossRefGoogle Scholar
Tsuchida, N., Inoue, T., and Enami, K.: Estimation of the true stress and true strain until just before fracture by the stepwise tensile test and Bridgman equation for various metals and alloys. (JPN) Mater. Trans. 53, 133139 (2012).CrossRefGoogle Scholar
Armstrong, R.W.: Strength and ductility of metals. Trans. Indian Inst. Met. 50, 521531 (1997).Google Scholar
Hérenguel, J. and Lacombe, P.: De l’influence de la grosseur du grain sur les propriétés mécaniques du magnésium extra pur. Métaux 11, 185186 (1936).Google Scholar
Hauser, F.E., Landon, P.R., and Dorn, J.E.: Fracture of magnesium alloys at low temperature. Trans. TMS-AIME 206, 589593 (1956).Google Scholar
Chapman, J.A. and Wilson, D.V.: Room temperature ductility of fine-grain magnesium. J. Inst. Met. 91, 39 (1962–1963).Google Scholar
Wilson, D.V.: The ductility of polycrystalline magnesium below 300 K. J. Inst. Met. 98, 133143 (1970).Google Scholar
Li, Q.Z.: Mechanical properties and microscopic deformation mechanism of polycrystalline magnesium under high-strain-rate compressive loadings. Mater. Sci. Eng., A 540, 130134 (2012).CrossRefGoogle Scholar
Armstrong, R.W. and Li, Q.Z.: Dislocation mechanics of high-rate deformations. Metall. Mater. Trans. A 46, 44384453 (2015).CrossRefGoogle Scholar
Petit, J.: Breakup of copper shaped-charge jets: Experiment, numerical simulations, and analytic modeling. J. Appl. Phys. 98, 123521 (2005).CrossRefGoogle Scholar
Armstrong, R.W.: Plasticity: Grain size effects III. In Reference Module in Materials Science and Engineering, Hashmi, S., ed. (Elsevier Science Publishers, New York, 2016); p. 23.Google Scholar
He, G., Dou, Y., Guo, X., and Liu, Y.: Computational investigation of effects of grain size on ballistic performance of copper. Int. J. Comput. Methods Eng. Sci. Mech. 19, 110 (2018).CrossRefGoogle Scholar
Prasad, Y.V.R.K. and Armstrong, R.W.: Polycrystal versus single-crystal strain rate sensitivity of cadmium. Phil. Mag. 29, 14211425 (1974).CrossRefGoogle Scholar
Armstrong, R.W. and Rodriguez, P.: Flow stress/strain rate/grain size coupling for fcc nanopolycrystals. Phil. Mag. 86, 5787 (2006).CrossRefGoogle Scholar
Matsui, I., Uesugi, T., Takigawa, Y., and Higashi, K.: Effect of interstitial carbon on the mechanical properties of electrodeposited bulk nanocrystalline nickel. Acta Mater. 61, 33603369 (2013).CrossRefGoogle Scholar
Hughes, G.D., Smith, S.D., Pande, C.S., Johnson, H.R., and Armstrong, R.W.: Hall–Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scr. Metall. 20, 9397 (1986).CrossRefGoogle Scholar
Li, Y.J., Mueller, H.W., Höppel, M., Göken, M., and Blum, W.: Deformation kinetics of nanocrystalline nickel. Acta Mater. 55, 57085717 (2007).CrossRefGoogle Scholar
Armstrong, R.W. and Balasubramanian, N.: Unified Hall–Petch description of nano-grain nickel hardness, flow stress and strain rate sensitivity measurements. AIP Adv. 7, 085010 (2017).CrossRefGoogle Scholar
Mohanty, G., Wheeler, J.M., Raghavan, R., Wehrs, J., Hasgawa, M., Mischler, S., Phillipe, L., and Michler, J.: Elevated temperature, strain rate jump micro-compression of nanocrystalline nickel. Phil. Mag. 95, 18781895 (2015).CrossRefGoogle Scholar
Li, H., Liang, Y., Zhao, L., Hu, J., Han, S., and Lian, J.: Mapping the strain rate and grain size dependence of deformation behaviors in nanocrystalline face-centered-cubic Ni and Ni-based alloys. J. Alloys Compd. 709, 566574 (2017).CrossRefGoogle Scholar
Armstrong, R.W., Walley, S.M., and Elban, W.L.: Elastic, plastic, and cracking aspects of the hardness of materials. Int. J. Mod. Phys. B 28, 1330004 (2013).CrossRefGoogle Scholar
Armstrong, R.W., Ruff, A.W., and Shin, H.: Elastic, plastic and cracking indentation behavior of silicon crystals. Mater. Sci. Eng., A 209, 9196 (1996).CrossRefGoogle Scholar
Armstrong, R.W., Mecholsky, J.J., Shin, H., and Tsai, Y.L.: Elasticity, plasticity, and cracking at indentations in single crystal silicon. J. Mater. Sci. Lett. 12, 12741275 (1993).CrossRefGoogle Scholar
Wan, H., Shen, Y., Chen, Q., and Chen, Y.: A plastic damage model for finite element analysis of cracking of silicon under indentation. J. Mater. Res. 25, 22262236 (2010).CrossRefGoogle Scholar
Armstrong, R.W.: Material grain size and crack size influences on cleavage fracturing. In Fracturing across the Multi-Scales of Diverse Materials, Armstrong, R.W., Antolovich, S.D., Griffiths, J.R., and Knott, J.F., eds.; Philosophical Transactions of the Royal Society of London, Series A, Vol. 373 (2015); p. 20140124.Google ScholarPubMed
Armstrong, R.W.: Dislocation viscoplasticity aspects of material fracturing. Eng. Fract. Mech. 77, 13481359 (2010).CrossRefGoogle Scholar
Irwin, G.R.: Plastic zone near a crack and fracture toughness. In Mechanical and Metallurgical Behavior of Sheet Materials, 7th Sagamore Ordnance Materials Research Conference, Burke, J.J., Reed, N.L., and Weiss, V., eds. (Syracuse University Research Institute, Syracuse, NY, 1961); pp. 6378.Google Scholar
Bilby, B.A., Cottrell, A.H., and Swinden, K.H.: The spread of plastic yielding from a notch. Proc. R. Soc. London, Ser. A 272, 304314 (1963).Google Scholar
Knott, J.F.: Brittle fracture in structural steels; perspectives at different size-scales. In Fracturing across the Multi-Scales of Diverse Materials, Armstrong, R.W., Antolovich, S.D., Griffiths, J.R., and Knott, J.F., eds.; Philosophical Transactions of the Royal Society of London, Series A, Vol. 373 (2015); p. 20140126.Google Scholar
Zhang, C., Hu, X., Sercombe, T., Li, Q., Wu, Z., and Lu, P.: Prediction of ceramic fracture with normal distribution pertinent to grain size. Acta Mater. 145, 4148 (2018).CrossRefGoogle Scholar
Hu, X. and Liang, L.: Elastic-plastic and quasi-brittle fracture. in Handbook of Mechanics of Materials, Hsueh, C-H., Schmauder, S., Chen, C-S., and Chawla, K.K., eds., (Springer, Singapore, 2018); pp. 132.Google Scholar
Armstrong, R.W.: Grain size dependent alumina fracture mechanics stress intensity. Int. J. Refract. Met. Hard Mater. 19, 251255 (2001).CrossRefGoogle Scholar
Armstrong, R.W. and Cazacu, O.: Indentation fracture mechanics toughness dependence on grain size and crack size; Application to alumina and WC-Co. Int. J. Refract. Met. Hard Mater. 24, 129134 (2006).CrossRefGoogle Scholar
Usami, S., Kimoto, H., Takahashi, I., and Shida, S.: Strength of ceramic materials containing small flaws. Eng. Fract. Mech. 23, 745761 (1986).CrossRefGoogle Scholar
Rice, R.W.: Mechanical Properties of Ceramics and Composites (Marcel Dekker, New York, NY, 2000); p. 80.CrossRefGoogle Scholar
Wang, N., Jiang, F., Xu, X., and Lu, X.: Effects of crystal orientation on the crack propagation of sapphire by sequential indentation testing. Crystals 8, 3 (2018).CrossRefGoogle Scholar
Muchtar, A. and Lim, L.C.: Indentation fracture toughness of high purity submicron alumina. Acta Mater. 46, 16831690 (1998).CrossRefGoogle Scholar
Franco, A., Roberts, S.G., and Warren, P.D.: Fracture toughness, surface flaw sizes, and flaw densities in alumina. Acta Mater. 45, 10091015 (1997).CrossRefGoogle Scholar
Fu, M.W., Wang, J.L., and Korsunsky, A.M.: A review of geometrical and microstructural size effects in micro-scale deformation processing of metallic alloy components. Int. J. Mach. Tool Manufact. 109, 94125 (2016).CrossRefGoogle Scholar
Chen, G., Yi, C., Xu, F.F., Zhang, Y., Zhang, P., and Wang, C.J.: A constitutive model considering secondary phase hardening and size effect in plastic deformation of Cu–3 wt% Ag–0.5 wt% Zr thin sheet. Mater. Sci. Eng., A 730, 207216 (2018).CrossRefGoogle Scholar
Armstrong, R.W.: Hall–Petch analysis of dislocation pile-ups in thin material layers and in nanopolycrystals. J. Mater. Res. 28, 17921798 (2013).CrossRefGoogle Scholar
Lee, Y-S., Ha, S., Park, J-H., and Lee, S-B.: Structure-dependent mechanical behavior of copper thin films. Mater. Charact. 128, 6874 (2017).CrossRefGoogle Scholar
Wu, K., Zhang, J.Y., Li, G., Wang, Y.Q., Cui, J.C., Liu, G., and Sun, J.: Stacking fault-mediated ultra-strong nanocrystalline Ti thin films. Nanotechnology 28, 445706 (2017).CrossRefGoogle Scholar
An, J., Wang, Y.F., Wang, Q.Y., Cao, W.Q., and Huang, C.X.: The effect of reducing specimen thickness on mechanical behavior of cryo-rolled ultrafine grain-grained copper. Mater. Sci. Eng., A 651, 17 (2016).CrossRefGoogle Scholar
Okamoto, N.L., Kashioka, D., Hirato, T., and Inui, H.: Specimen- and grain-size dependence of compression deformation behavior in nanocrystalline copper. Int. J. Plast. 56, 173183 (2014).CrossRefGoogle Scholar
Ghosh, P. and Chokshi, A.H.: Size effects on strength in the transition from single-to-polycrystalline behavior. Metall. Mater. Trans. A 46, 56715683 (2015).CrossRefGoogle Scholar
Vinogradov, A. and Estrin, Y.: Analytical and numerical approaches to modelling severe plastic deformation. Prog. Mater. Sci. 95, 172242 (2018).CrossRefGoogle Scholar
Koizumi, T. and Kurado, M.: Grain size effects in aluminum processed by severe plastic deformation. Mater. Sci. Eng., A 710, 300308 (2018).CrossRefGoogle Scholar
Bazarnik, P., Huang, Y., Lewandowska, M., and Langdon, T.G.: Enhanced grain refinement and microhardness by hybrid processing using hydrostatic extrusion and high-pressure torsion. Mater. Sci. Eng., A 712, 513520 (2018).CrossRefGoogle Scholar
Najafi, S., Eivani, A.R., Samaee, M., Jafarian, H.R., and Zhou, J.: A comprehensive investigation of the strengthening effect of dislocations, texture and low and high angle grain boundaries in ultrafine grained AA6063 aluminum alloy. Mater. Char. 136, 6068 (2018).CrossRefGoogle Scholar
Muñoz, J.A., Higuera, C.F., and Cabrera, J.M.: Microstructural and mechanical study in the plastic zone of ARMCO iron processed by ECAP. Mater. Sci. Eng., A 697, 2436 (2017).CrossRefGoogle Scholar
Luo, P., Hu, Q., and Wu, X.: Quantitatively analyzing strength contribution vs grain boundary scale relation in pure titanium subjected to severe plastic deformation. Metall. Mater. Trans. A 47, 19221927 (2016).CrossRefGoogle Scholar
Cao, Y., Ni, S., Liao, K., Song, M., and Zhu, Y.: Structural evolution of metallic materials processed by severe plastic deformation. Mater. Sci. Eng. Rev. 133, 159 (2018).CrossRefGoogle Scholar
Percy, J.: On steel wire of high tenacity. J. Iron Steel Inst. Jpn. 29, 6280 (1886).Google Scholar
Kammerhofer, C., Hohenwarter, A., Scheriau, S., Brantner, H.P., and Pippan, R.: Influence of morphology and structural size on the fracture behavior of a nanostructured pearlitic steel. Mater. Sci. Eng., A 585, 190196 (2013).CrossRefGoogle Scholar
Mishra, K. and Singh, A.: Effect of interlamellar spacing on fracture toughness of nano-structured pearlite. Mater. Sci. Eng., A 706, 2226 (2017).CrossRefGoogle Scholar
Zhao, L., Park, N., Tian, Y., Chen, S., Shibata, A., and Tsuji, N.: Novel thermomechanical processing methods for achieving ultra-grain refinement of low-carbon steel without heavy plastic deformation. Mater. Res. Lett. 5, 6168 (2017).CrossRefGoogle Scholar
Field, D.M. and van Aiken, D.C.: Nanocrystalline advanced high strength steel produced by cold rolling and annealing. Metall. Mater. Trans. A 47, 19131917 (2016).CrossRefGoogle Scholar
He, B.B., Hu, B., Yen, H.W., Cheng, G.J., Wang, Z.K., Luo, H.W., and Huang, M.X.: High dislocation density-induced large ductility in deformed and partitioned steels. Science 357, 10291032 (2017).CrossRefGoogle ScholarPubMed
Liu, J., Chen, Z., Zhang, F., Ji, G., Wang, M., Ma, Y., Ji, V., Zhong, S., Wu, Y., and Wang, H.: Simultaneously increasing strength and ductility of nanoparticles reinforced Al composites via accumulative orthogonal extrusion process. Mater. Res. Lett. 6, 406412 (2018).CrossRefGoogle Scholar
Mukai, T. and Higashi, K.: Ductility enhancement of the ultrafine-grained aluminum under dynamic loading. Scr. Mater. 44, 14931496 (2001).CrossRefGoogle Scholar
Ovid’ko, I.A., Valiev, R.Z., and Zhu, Y.T.: Review on superior strength and enhanced ductility of metallic nano-metals. Prog. Mater. Sci. 94, 462540 (2018).CrossRefGoogle Scholar
Wilson, D.V. and Chapman, J.A.: Effects of preferred orientation on grain size dependence of yield strength in metals. Phil. Mag. 8, 15431551 (1963).CrossRefGoogle Scholar
Wang, Y. and Choo, H.: Influence of texture on Hal–Petch relationships in an Mg alloy. Acta Mater. 81, 8393 (2014).CrossRefGoogle Scholar
Yu, H., Xin, Y., Wang, M., and Liu, Q.: Hall–Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol. 34, 248256 (2018).CrossRefGoogle Scholar
Yu, H., Li, C., Xin, Y., Chapuis, A., Huang, X., and Liu, Q.: The mechanism for the high dependence of the Hall–Petch slope for twinning/slip in Mg alloys. Acta Mater. 128, 313326 (2017).CrossRefGoogle Scholar
Yuan, R., Beyerlein, I.J., and Zhou, C.: Coupled crystal orientation-size effects on the strength of nano-crystals. Sci. Rep. 6, 26254 (2016).CrossRefGoogle ScholarPubMed
Armstrong, R.W. and Smith, T.R.: Dislocation pile-up predictions for the strength properties of ultrafine grain size fcc metals. In Processing and Properties of Nanocrystalline Materials, Suryanarayana, C., Singh, J., and Froes, F.H., eds. (TMS-AIME, Warrendale, PA, 1996); pp. 345354.Google Scholar
Petch, N.J. and Armstrong, R.W.: Work-hardening in cleavage fracture toughness. Acta Metall. 37, 22792285 (1989).CrossRefGoogle Scholar