Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T02:41:27.309Z Has data issue: false hasContentIssue false

Sintered compacts of nano and micron-sized BaTiO3: Dramatic influence on the microstructure and dielectric properties

Published online by Cambridge University Press:  01 April 2006

Vishnu Shanker
Affiliation:
Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
Tokeer Ahmad
Affiliation:
Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
Henry Ip
Affiliation:
Department of Chemistry and Biochemistry, Center for Materials Research and Education, Rowan University, Glassboro, New Jersey 08028
Ashok K. Ganguli*
Affiliation:
Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Sintered compacts of nano-sized and micron-sized BaTiO3 show sharp ferroelectric transition and high dielectric constant at specific compositions. The sintered compacts with 1 wt% nano-BaTiO3 show a maximum dielectric constant of 1680. At the transition temperature (Tc) there are two maxima at 0.5 and 2 wt%. The variation in the dielectric constant at Tc is also reflected in the behavior of the ferroelectric transition as studied by differential scanning calorimetry. This interesting oscillatory variation of the dielectric constant and dielectric loss with increase in the amount of nanoparticles in the sintered compacts is observed for the first time. The variation of the dielectric properties and the ferroelectric transition of the sintered compacts could be related to subtle changes in the microstructure.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jaffe, B., Cooke, W.R., Jaffe, H.: Piezoelectric Ceramics (Academic Press, London, UK, 1971).Google Scholar
2.Haertling, G.H.: Ferroelectric ceramics: History and technology. J. Amer. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
3.Beauger, A., Mutin, J.C., Niepce, J.C.: Synthesis reaction of barium titanate (IV). Part 1. Effect of the gaseous atmosphere upon the thermal evolution of the system barium carbonate-titanium dioxide. J. Mater. Sci. 18, 3041 (1983).CrossRefGoogle Scholar
4.Beauger, A., Mutin, J.C., Niepce, J.C.: Synthesis reaction of metatitanate BaTiO3. Part 2. Study of solid-solid reaction interfaces. J. Mater. Sci. 18, 3543 (1983).CrossRefGoogle Scholar
5.Hozer, L.: Semiconductor Ceramics and Grain Boundary Effect (Ellis Horwood Press, New York, 1994), p. 119.Google Scholar
6.Cross, L.E., Newnham, R.E.: History of Ferroelectrics Vol. III (American Ceramic Society, Westerville, OH, 1987).Google Scholar
7.Shih, W.Y., Shih, W.H., Aksay, I.A.: Size dependence of the ferroelectric transition of small BaTiO3 particles: Effect of depolarization. Phys. Rev. B. 50, 15575 (1994).CrossRefGoogle ScholarPubMed
8.Uchino, K.: Materials issues in design and performance of piezoelectric actuators: An overview. Acta Mater. 46, 3745 (1998).CrossRefGoogle Scholar
9.Zhu, W., Akbar, S.A., Asiaie, R., Datta, P.K.: Sintering and dielectric properties of hydrothermally synthesized cubic and tetragonal BaTiO3 powders. Jpn. J. Appl. Phys. 36, 214 (1997).CrossRefGoogle Scholar
10.Goldberg, R.L., Smith, S.W.: Multilayer piezoelectric ceramics for two-dimensional array transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 41, 761 (1994).CrossRefGoogle ScholarPubMed
11.Kwok, C.K., Desu, S.B.: Low temperature perovskite formation of lead zirconate titanate thin films by a seeding process. J. Mater. Res. 8, 339 (1993).CrossRefGoogle Scholar
12.Hirashima, H., Onishi, E., Nakagowa, M.: Preparation of PZT powders from metal alkoxides. J. Non-Cryst. Solids 121, 404 (1990).CrossRefGoogle Scholar
13.Pechini, M.P.: Method of preparing lead and alkaline-earth titanates and niobates and coating method using the same to form a capacitor, U.S. Patent No. 3 330 697 (1967).Google Scholar
14.Kakihana, M., Arima, M., Nakamura, Y., Yashima, M., Yoshimura, M.: Spectroscopic characterization of precursors used in the pechini-type polymerizable complex processing of barium titanate. Chem. Mater. 11, 438 (1999).CrossRefGoogle Scholar
15.Arya, P.R., Jha, P., Ganguli, A.K.: Synthesis, characterization and dielectric properties of nanometer-sized barium strontium titanates prepared by the polymeric citrate precursor method. J. Mater. Chem. 13, 415 (2003).CrossRefGoogle Scholar
16.Arya, P.R., Jha, P., Subbanna, G.N., Ganguli, A.K.: Polymeric citrate precursor route to the synthesis of nano-sized barium lead titanates. Mater. Res. Bull. 38, 617 (2003).CrossRefGoogle Scholar
17.Ahmad, T., Kavitha, G., Narayana, C., Ganguli, A.K.: Nanostructured barium titanate prepared through a modified reverse micellar route: Structural distortion and dielectric properties. J. Mater. Res. 20, 1415 (2005).CrossRefGoogle Scholar
18.German, R.M.: Sintering Theory and Practice (John Wiley & Sons, New York, 1996), p. 86.Google Scholar
19.Takagi, M.: Electron diffraction study of liquid-solid transition of thin metal films. J. Phys. Soc. Jpn. 9, 359 (1954).CrossRefGoogle Scholar
20.Buffat, P., Borel, J-P.: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976).CrossRefGoogle Scholar
21.Zhang, M., Efremov, M.Y., Schiettekatte, S., Olson, E.A., Kwan, A.T., Lai, S.L., Wiseleden, T., Greene, J.E., Allen, L.H.: Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 62, 10548 (2000).CrossRefGoogle Scholar
22.Champion, Y., Bigot, J.: Synthesis and structural analysis of Al nanocrystalline powders. Nanostruct. Mater. 10, 1097 (1998).CrossRefGoogle Scholar
23.Bonevics, J.E., Marks, L.D.: The sintering behavior of ultrafine alumina particles. J. Mater. Res. 7, 1489 (1992).CrossRefGoogle Scholar
24.Zhu, H., Averback, R.S.: Sintering of nano particle powders: Simulations and experiments. Mater. Manuf. Processes 11, 905 (1996).CrossRefGoogle Scholar
25.Zhu, H., Averback, R.S.: Molecular dynamics simulations of densification processes in nanocrystalline materials. Mater. Sci. Eng. A 204, 96 (1995).CrossRefGoogle Scholar
26.Groza, J.R.: Nanocrystalline powder consolidation method, in Nanostructured Materials—Processing, Properties and Potential Applications, edited by Koch, C.C. (Noyes, New York, 2002), p. 116.Google Scholar
27.Mayo, M.: Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41, 85 (1996).CrossRefGoogle Scholar
28.Bourell, D.L. and Groza, J.R.: Consolidation of ultrafine and nanocrystalline powder, in Powder Metal Technologies and Fabrication, ASM Handbook (ASM International, Metals Park, OH, 1998), p. 583.Google Scholar
29.Anderievski, R.A.: Nanocrystalline high melting point compound-based materials. J. Mater. Sci. 29, 614 (1994).CrossRefGoogle Scholar
30.Zhu, H., Averback, R.S.: Sintering process of two nanoparticles: A study by molecular dynamics simulations. Philos. Mag. Lett. 73, 27 (1996).CrossRefGoogle Scholar
31.Averback, R.S., Zhu, H., Tao, R., Hofler, H.J. Sintering of nanocrystalline materials: Experiments and computer simulations, in Synthesis and Processing of Nanocrystalline Powder edited by Bourell, D.L. (TMS, Warrendale, PA, 1996), p. 203.Google Scholar
32.Hansen, J.D., Rusin, R.P., Teng, M.H., Johnson, D.L.: Combinedstage sintering model. J. Am. Ceram. Soc. 75, 1129 (1992).CrossRefGoogle Scholar
33.Efremov, M.Y., Schiettekatte, S., Zhang, M.E., Olson, A., Kwan, A.T., Berry, R.S., Allen, L.H.: Discrete periodic melting point observations for nanostructure ensembles. Phys. Rev. Lett. 85, 3560 (2000).CrossRefGoogle ScholarPubMed
34.Arlt, G., Hennings, D., de With, G.: Dielectric properties of finegrained barium titanate ceramics. J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar