Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T16:32:11.298Z Has data issue: false hasContentIssue false

Simulated Soft Tissue Nanoindentation: A Finite Element Study

Published online by Cambridge University Press:  01 August 2005

Shikha Gupta
Affiliation:
Medical Polymers Group, Department of Applied Science and Technology, University of California, Berkeley, California 94720
Fernando Carrillo
Affiliation:
Department of Orthopaedic Surgery, University of California, San Francisco, California 94110; and Chemical Engineering Department, Escola Universitària d’Enginyeria Technica Industrial de Terrassa (EUETIT) – Polytechnic University of Catalonia, Terrassa 08222, Spain
Medhi Balooch
Affiliation:
Department of Restorative Dentistry, University of California, San Francisco, California 94143
Lisa Pruitt
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California, 97420; and University of California—Berkeley/University of California—San Francisco Bioengineering Joint Graduate Group, San Francisco, California 94143
Christian Puttlitz*
Affiliation:
Department of Orthopaedic Surgery, University of California, San Francisco, California 94110; and University of California—Berkeley/University of California—San Francisco Bioengineering Joint Graduate Group, San Francisco, California 94143
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

To address the growing interest in nanoindentation for biomaterials, the following finite element study investigated the influence of indentation testing protocol and substrate geometry on quasi-static and dynamic load-displacement behavior of linear viscoelastic materials. For a standard linear solid, the conventional quasi-static indentation modulus, EQS, fell between the instantaneous and equilibrium modulus of the model. EQS approached the equilibrium modulus only for indentation unloading times 1000 times greater than the characteristic relaxation time of the model. It was nearly insensitive to other changes in the indentation testing protocol, such as tip radius and penetration depth, exhibiting variations of only 5–10%. Dynamic nanoindentation provided a quantitatively accurate assessment of the complex dynamic modulus (within ±12%) for a range material of parameters at physiologically relevant testing parameters. Both quasi-static and dynamic moduli calculated from the irregular surfaces varied with the size and shape of the irregularities but were still within 10% of the smooth surface values for penetration depths larger than the dimensions of the surface irregularities.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Smith-Adaline, E.A., Volkman, S.K., Ignelzi, M.A. Jr.Slade, J., Platte, S. and Goldstein, S.A.: Mechanical environment alters tissue formation patterns during fracture repair. J. Ortho. Res. 22, 1079 (2004).CrossRefGoogle ScholarPubMed
2Hulmes, D.J.S., Marsden, M.E., Strachan, R.K., Harvey, R.E., McInnes, N. and Gardner, D.L.: Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content. Osteoarthritis Cartilage 12, 232 (2004).CrossRefGoogle ScholarPubMed
3Hertz, H.: On the contact of solid, elastic bodies. J. Reine Angew. Math. 92, 156 (1881).Google Scholar
4Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Engng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
5Doerner, M.F. and Nix, W.D.: A method or interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
6Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
7Lee, E.H.: Stress analysis in visco-elastic bodies. Quarterly Appl. Math. 13, 183 (1955).CrossRefGoogle Scholar
8Radok, J.R.M.: Visco-elastic stress analysis. Quarterly Appl. Math. 15, 198 (1957).CrossRefGoogle Scholar
9Lee, E.H. and Radok, J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).CrossRefGoogle Scholar
10Hunter, S.C.: The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J. Mech. Phys. Solids 8, 219 (1960).CrossRefGoogle Scholar
11Graham, G.A.C.: Contact problem in linear theory of viscoelasticity when time dependent contact area has any number of maxima and minima. Int. J. Eng. Sci. 5, 495 (1967).CrossRefGoogle Scholar
12Yang, W.H.: Contact problem for viscoelastic bodies. J. Appl. Mech. 33, 395 (1966).CrossRefGoogle Scholar
13Ting, T.C.T.: Contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845 (1966).CrossRefGoogle Scholar
14Shimizu, S., Yanagimoto, T. and Sakai, M.: Pyramidal indentation load–depth curves of viscoelastic materials. J. Mater. Res. 14, 4075 (1999).CrossRefGoogle Scholar
15Sakai, M.: Time-dependent viscoelastic relation between load and penetration for an axisymmetric indenter. Philos. Mag. A 82, 1841 (2002).CrossRefGoogle Scholar
16Lu, H., Wang, B., Ma, J., Huang, G. and Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189 (2003).CrossRefGoogle Scholar
17Cheng, Y.T. and Cheng, C.M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R 44, 91 (2004).CrossRefGoogle Scholar
18Briscoe, B.J., Fiori, L. and Pelillo, E.: Nano-indentation of polymeric surfaces. J. Phys. D: App. Phys. 31, 2395 (1998).CrossRefGoogle Scholar
19Klapperich, C., Komvopolous, K. and Pruitt, L.A.: Nanomechanical properties of polymers determined from nanoindentation experiments. J. Tribol. 123, 624 (2001).CrossRefGoogle Scholar
20Yang, S., Zhang, Y.W. and Zeng, K.Y.: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655 (2004).CrossRefGoogle Scholar
21Ngan, A.H.W. and Tang, B.: Viscoelastic effects during unloading in depth-sensing indentation. J Mater. Res. 17, 2604 (2002).CrossRefGoogle Scholar
22Tang, B. and Ngan, A.H.W.: Accurate measurement of tip sample contact size during nanoindentation of viscoelastic materials. J. Mater. Res. 18, 1141 (2003).CrossRefGoogle Scholar
23Rho, J.Y., Tsui, T.Y. and Pharr, G.M.: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 20, 1325 (1998).Google Scholar
24Rho, J.Y., Roy, M.E., Tsui, T.Y. and Pharr, G.M.: Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J. Biomed. Mater. Res. 45, 48 (1999).3.0.CO;2-5>CrossRefGoogle ScholarPubMed
25Fan, Z., Swadener, J.G., Rho, J.Y., Roy, M.E. and Pharr, G.M.: Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J. Ortho. Res. 20, 806 (2002).CrossRefGoogle ScholarPubMed
26Habelitz, S., Marshall, S.J., Marshall, G.W. and Balooch, M.: Mechanical properties of human dental enamel on the nanometer scale. Archive Oral Bio. 46, 173 (2001).CrossRefGoogle Scholar
27Ho, S.P., Balooch, M., Marshall, S.J. and Marshall, G.W.: Local properties of a functionally graded interphase between cementum and dentin. J. Biomed. Mater. Res. A 70A, 480 (2004).CrossRefGoogle Scholar
28Balooch, G., Marshall, G.W., Marshall, S.J., Warren, O.L., Asif, S.A.S. and Balooch, M.: Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J. Biomech. 37, 1223 (2004).CrossRefGoogle ScholarPubMed
29Ebenstein, D., Kuo, A., Rodrigo, J.J., Reddi, A.H., Reis, M. and Pruitt, L.: A nanoindentation technique for functional evaluation of cartilage repair tissue. J. Mater. Res. 19, 273 (2004).CrossRefGoogle Scholar
30Ebenstein, D.M. and Pruitt, L.A.: Nanoindentation of soft hydrated materials for application to vascular tissues. J. Biomed. Mater. Res. A 69A, 222 (2004).CrossRefGoogle Scholar
31Hu, K., Radhakrishnan, P., Patel, R.V. and Mao, J.J.: Regional structural and viscoelastic properties of fibrocartilage upon dynamic nanoindentation of the articular condyle. J Struct. Bio. 136, 46 (2001).CrossRefGoogle ScholarPubMed
32Loubet, J.L., Oliver, W.C. and Lucas, B.N.: Measurement of the loss tangent of low-density polyethylene with a nanoindentation technique. J. Mater. Res. 15, 1195 (2000).CrossRefGoogle Scholar
33Asif, S.A., Wahl, K.J. and Colton, R.J.: Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev. Sci. Instrum. 70, 2408 (1999).CrossRefGoogle Scholar
34Lee, C.S., Jho, J.Y., Choi, K. and Hwang, T.W.: Dynamic mechanical behavior of ultra-high molecular weight polyethylene irradiated with gamma rays. Macromol. Res. 12, 141 (2004).CrossRefGoogle Scholar
35Park, K., Mishra, S., Lewis, G., Losby, J., Fan, Z.F. and Park, J.B.: Quasi-static and dynamic nanoindentation studies on highly crosslinked ultra-high-molecular-weight polyethylene. Biomaterials 25, 2427 (2004).CrossRefGoogle ScholarPubMed
36Iatridis, J.C., Wu, J., Yandow, J.A. and Langevin, H.M.: Subcutaneous tissue mechanical behavior is linear and viscoelastic under uniaxial tension. Connect. Tissue Res. 44, 208 (2003).CrossRefGoogle ScholarPubMed
37Ferguson, S.J., Bryant, J.T. and Ito, K.: The material properties of the bovine acetabular labrum. J. Orthop. Res. 19, 887 (2001).CrossRefGoogle ScholarPubMed
38Krag, S. and Andreassen, T.T.: Biomechanical measurements of the porcine lens capsule. Exp. Eye Res. 62, 253 (1996).CrossRefGoogle ScholarPubMed
39Setton, L.A., Mow, V.C., Muller, F.J., Pita, J.C. and Howell, D.S.: The mechanical behavior of articular cartilage are significantly altered following transection of the anterior cruciate ligament. J. Orthop. Res. 12, 473 (1994).CrossRefGoogle ScholarPubMed
40Roth, V., Schoonbeck, J.M. and Mow, V.C.: Low frequency dynamic behavior of articular cartilage under torsional shear. Trans. Orthop. Res. Soc. 7, 150 (1982).Google Scholar
41Sah, R.L., Grodzinsky, A.J., Haas, A.H. and Sandy, J.D. Effects of static and dynamic compression on matrix metabolism in cartilage explants, in Articular Cartilage and Osteoarthritis, edited by Keuttner, K.E., Schleyerbach, R., Peyron, J.G., and Hascall, V.C. (Raven Press, New York, 1992), p. 373.Google Scholar
42Huang, C-Y., Mow, V.C. and Ateshian, G.A.: The role of flow-independent viscoelasticity in the biphasic tensile and compressive: Responses of articular cartilage. J. Biomech. Eng. 123, 410 (2001).CrossRefGoogle ScholarPubMed
43Mow, V.C. and Ratcliffe, A. Structure and function of articular cartilage and meniscus, in Basic Orthopaedic Biomechanics, edited by Mow, V.C. and Hayes, W.C.. (Lippincott-Raven, Philadelphia, PA, 1997), pp.113–177.Google Scholar
44Skaggs, D.L., Weidenbaum, M. and Iatridis, J.C.: Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine 19, 1310 (1994).CrossRefGoogle ScholarPubMed
45Li, S.P., Patwardhan, A.G., Amirouche, F.M.L., Harvey, R. and Meade, K.P.: Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial-compression. J. Biomech. 28, 779 (1995).CrossRefGoogle ScholarPubMed
46Lakes, R.: Viscoelastic Solids (CRC Press, Boca Raton, FL, 1998).Google Scholar
47Akizuki, S., Mow, V.C., Muller, F., Pita, J.C., Howell, D.S. and Manicourt, D.H.: Tensile properties of human knee-joint cartilage: Influence of ionic conditions, weight bearing and fibrillation on the tensile modulus. J. Ortho. Res. 4, 379 (1986).CrossRefGoogle ScholarPubMed
48Riches, P.E., Dhillon, N., Lotz, J., Woods, A.W. and McNally, D.S.: The internal mechanics of the intervertebral disk under cyclic loading. J. Biomech. 35, 1263 (2002).CrossRefGoogle ScholarPubMed
49Fortin, M., Soulhat, J., Shirazi-Ali, A., Hunziker, E.B. and Buschmann, M.D.: Unconfined compression of articular cartilage: Nonlinear behavior and comparison with a fibril-reinforced biphasic model. J. Biomech. Eng. 122, 189 (2000).CrossRefGoogle ScholarPubMed
50Armstrong, C.G., Lai, V.M. and Mow, V.C.: An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106, 165 (1984).CrossRefGoogle ScholarPubMed
51Provenzano, P.P., Lakes, R.S., Corr, D.T., Vanderby, R. Jr.: Application of nonlinear viscoelastic models to describe ligament behavior. Biomech. Model Mechanobiol. 1, 45 (2002).CrossRefGoogle ScholarPubMed
52Pioletti, D.P. and Rakotomanana, L.R.: On the independence of time and strain effects in the stress relaxation of ligaments and tendons. J. Biomech. 33, 1729 (2000).CrossRefGoogle ScholarPubMed
53Fung, Y.C.: Biomechanics of Living Tissues (Springer-Verlag, New York, 1996).Google Scholar
54Carrillo, F., Gupta, S., Balooch, M., Pruitt, L.A., Marshall, S.J., Marshall, G.W., and Puttlitz, C.M.: Nanoindentation of soft materials (unpublished).Google Scholar
55Wang, M., Liechti, K.M., White, J.M. and Winter, R.M.: Nanoindentation of polymeric thin films with interfacial force microscopy. J. Mech. Phy. Solids 52, 2329 (2004).CrossRefGoogle Scholar