Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T15:19:18.276Z Has data issue: false hasContentIssue false

Shear deformation capability of different metallic glasses

Published online by Cambridge University Press:  31 January 2011

F.F. Wu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Z.F. Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
J. Shen
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
S.X. Mao
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The mechanical properties of Zr52.5Ni14.6Al10Cu17.9Ti5 and Ti40Zr25Ni3Cu12Be20 metallic glasses were investigated under uniaxial compressive loading and small punch loading, respectively. The Zr-based metallic glass displays higher density of shear bands, larger critical shear offsets and higher energy absorbing capability than the Ti-based metallic glass under the small punch tests. A concept of critical shear offset is proposed to explain the difference in shear deformation abilities or plasticity of different metallic glasses. The current experiments demonstrate that, in contrast with the small difference between the responses of the Zr- and Ti-based metallic glasses under uniaxial compressive loading, the biaxial tension produced by the small punch test is an effective way to evaluate the difference in shear deformation abilities and can be used to distinguish the brittleness or plasticity of various metallic glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schuh, C.A., Hufnagel, T.C., Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 2007CrossRefGoogle Scholar
2Chen, M., Inoue, A., Zhang, W., Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 2006CrossRefGoogle ScholarPubMed
3Bei, H., Xie, S., George, E.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 2006CrossRefGoogle Scholar
4Zhang, Z.F., Zhang, H., Pan, X.F., Das, J., Eckert, J.: Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass. Philos. Mag. Lett. 85, 513 2005CrossRefGoogle Scholar
5Chen, H., He, Y., Shiflet, G.J., Poon, S.J.: Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature 367, 541 1994CrossRefGoogle Scholar
6Wu, F.F., Zhang, Z.F., Jiang, F., Sun, J., Shen, J., Mao, S.X.: Multiplication of shear bands and ductility of metallic glass. Appl. Phys. Lett. 90, 191909 2007CrossRefGoogle Scholar
7Wright, W.J., Saha, R., Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. 42, 642 2001CrossRefGoogle Scholar
8Zhang, Z.F., Eckert, J., Schultz, L.: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 2003CrossRefGoogle Scholar
9Conner, R.D., Li, Y., Nix, W.D., Johnson, W.L.: Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater. 52, 2429 2004CrossRefGoogle Scholar
10Conner, R.D., Johnson, W.L., Paton, N.E., Nix, W.D.: Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904 2003CrossRefGoogle Scholar
11Inoue, A., Katsuya, A., Amiya, K., Masumoto, T.: Preparation of amorphous Fe–Si–B and Co–Si–B alloy wires by a melt extraction method and their mechanical and magnetic properties. Mater. Trans., JIM 36, 802 1995CrossRefGoogle Scholar
12Katuya, A., Inoue, A., Amiya, K.: Production of Ni–Si–B amorphous alloy wires by melt extraction and their thermal and mechanical properties. Int. J. Rapid Solidif. 9, 137 1996Google Scholar
13Schuh, C.A., Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 2003CrossRefGoogle Scholar
14Jiang, W.H., Pinkerton, F.E., Atzmon, M.: Mechanical behavior of shear bands and the effect of their relaxation in a rolled amorphous Al-based alloy. Acta Mater. 53, 3469 2005CrossRefGoogle Scholar
15Yang, B., Nieh, T.G.: Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass. Acta Mater. 55, 295 2007CrossRefGoogle Scholar
16Ramamurty, U., Jana, S., Kawamura, Y., Chattopadhyay, K.: Hardness and plastic deformation in a bulk metallic glass. Acta Mater. 53, 705 2005CrossRefGoogle Scholar
17Zhang, H.W., Jing, X.N., Subhash, G., Kecskes, L.J., Dowding, R.J.: Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation. Acta Mater. 53, 3849 2005CrossRefGoogle Scholar
18Lu, J., Ravichandran, G.: Pressure-dependent flow behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass. J. Mater. Res. 18, 2039 2003CrossRefGoogle Scholar
19Wu, F.F., Zhang, Z.F., Shen, J., Mao, S.X.: Shear deformation and plasticity of metallic glass under multiaxial loading. Acta Mater. 56, 894 2008CrossRefGoogle Scholar
20Pampillo, C.A.: Review: Flow and fracture in amorphous alloys. J. Mater. Sci. 10, 1194 1975CrossRefGoogle Scholar
21Pampillo, C.A., Chen, H.S.: Compressive plastic deformation of a bulk metallic glass. Mater. Sci. Eng., A 13, 181 1974CrossRefGoogle Scholar
22Wu, F.F., Zhang, Z.F., Mao, S.X.: Size-dependent shear fracture and global tensile plasticity of metallic glasses. Acta Mater., (2008, in press)CrossRefGoogle Scholar
23Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 2005CrossRefGoogle ScholarPubMed
24Inoue, A., Shen, B.L., Chang, C.T.: Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1−x,Cox)(0.75)B0.2Si0.05](96)Nb4 system. Acta Mater. 52, 4093 2004CrossRefGoogle Scholar
25Wu, F.F., Zhang, Z.F., Shen, B.L., Mao, S.X., Eckert, J.: Size effect on shear fracture and fragmentation of a Fe57.6Co14.4B19.2Si4.8Nb4 bulk metallic glass. Adv. Eng. Mater. 10, 727 2008CrossRefGoogle Scholar
26Inoue, A., Shen, B.L., Koshiba, H., Kato, H., Yavari, A.R.: Ultra-high strength above 5000 MPa and soft magnetic properties of Co–Fe–Ta–B bulk glassy alloys. Acta Mater. 52, 1631 2004CrossRefGoogle Scholar
27Xu, Y.K., Ma, H., Xu, J., Ma, E.: Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Mater. 53, 1857 2005CrossRefGoogle Scholar
28Chen, Q.J., Shen, J., Zhang, D.L., Fan, H.B., Sun, J.F.: Mechanical performance and fracture behavior of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass. J. Mater. Res. 22, 358 2007CrossRefGoogle Scholar
29Zhang, Z.F., Zhang, H., Shen, B.L., Inoue, A., Eckert, J.: Shear fracture and fragmentation mechanisms of bulk metallic glasses. Philos. Mag. Lett. 86, 643 2006CrossRefGoogle Scholar
30Chen, G., Ferry, M.: Some aspects of the fracture behaviour of Mg65Cu25Y10 bulk metallic glass during room-temperature bending. J. Mater. Sci. 41, 4643 2006CrossRefGoogle Scholar