Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T06:25:25.189Z Has data issue: false hasContentIssue false

Sharp probes of varying acuity: Instrumented indentation and fracture behavior

Published online by Cambridge University Press:  03 March 2011

Dylan J. Morris*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Sasha B. Myers
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Robert F. Cook
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The fracture and instrumented indentation behavior of a range of materials subjected to indentation by four sharp probes varying in acuity from the Berkovich to the cube-corner was studied. Quantities derived from load, displacement, and continuous stiffness measurements were evaluated for their ability to detect “pop-in”—sudden displacement excursions associated with fracture. It was found that gross unloading character was sensitive to the presence of fracture, even when no pop-in was detected. This may be useful in the development of fracture toughness estimation models that do not rely on the imaging of cracks.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Thurn, J., Morris, D.J. and Cook, R.F., J. Mater. Res. 17 2679 (2002).CrossRefGoogle Scholar
2.Riester, L., Bridge, R.J. and Breder, K. in Fundamentals of Nanondentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 45.Google Scholar
3.Tsui, T.Y., Oliver, W.C. and Pharr, G.M. in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 147.Google Scholar
4.Rother, B., Steiner, A., Dietrich, D.A., Jehn, H.A., Haupt, J. and Gissler, W., J. Mater. Res. 13 2071 (1998).CrossRefGoogle Scholar
5.Herbert, E.G., Pharr, G.M., Oliver, W.C., Lucas, B.N. and Hay, J.L., Thin Solid Films. 398 331 (2001).CrossRefGoogle Scholar
6.Harding, D.S., Oliver, W.C. and Pharr, G.M. in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Børgesen, P., Townsend, P.H., Ross, C.A., and Volkert, C.A. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 663.Google Scholar
7.Pharr, G.M., Mat. Sci. Eng. A A253 151 (1998).CrossRefGoogle Scholar
8.Li, X.D. and Bhushan, B., Thin Solid Films 398 313 (2001).CrossRefGoogle Scholar
9.Volinsky, A.A., Moody, N.R. and Gerberich, W.W., Acta Mater. 50 441 (2002).CrossRefGoogle Scholar
10.Kwadwo, K. and Rowcliffe, D.J., J. Am. Ceram. Soc. 86 811 (2003).Google Scholar
11.Lou, J., Shrotriya, P., Buchheit, T., Yang, D. and Soboyejo, W.O., J. Mater. Res. 18 719 (2003).CrossRefGoogle Scholar
12.Bucaille, J.L., Stauss, S., Felder, E. and Michler, J., Acta Mater. 51 1663 (2003).CrossRefGoogle Scholar
13.Sakai, M. and Nakano, Y., J. Mater. Res. 17 2161 (2002).CrossRefGoogle Scholar
14.Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A. and Suresh, S., Acta Mater. 49 3899 (2001).CrossRefGoogle Scholar
15.Giannakopoulos, A.E. and Suresh, S., Scripta Mater. 40 1191 (1999).CrossRefGoogle Scholar
16.Cheng, Y-T. and Li, Z., J. Mater. Res. 15 2830 (2000).CrossRefGoogle Scholar
17.Cheng, Y-T. and Li, Z., Philos. Mag. A 82 1821 (2002).CrossRefGoogle Scholar
18.Field, J.S., Swain, M.V. and Dukino, R.D., J. Mater. Res. 18 1412 (2003).CrossRefGoogle Scholar
19.Pharr, G.M., Harding, D.S. and Oliver, W.C. in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, edited by Nastasi, M., Parkin, D.M., and Gleiter, H. (NATO ASI series, Kluwer Academic Publishers, The Netherlands, 1993), p. 449.CrossRefGoogle Scholar
20.Anstis, G.R., Chantikul, P., Lawn, B.R. and Marshall, D.B., J. Am. Ceram. Soc. 64 533 (1981).CrossRefGoogle Scholar
21.Malzbender, J. and de With, G., Surf. Coat. Technol. 137 72 (2001).CrossRefGoogle Scholar
22.McGurk, M.R. and Page, T.F., J. Mater. Res. 14 2283 (1999).CrossRefGoogle Scholar
23.Cook, R.F. and Pharr, G.M., J. Am. Ceram. Soc. 73 787 (1990).CrossRefGoogle Scholar
24.Pharr, G.M., Oliver, W.C. and Brotzen, F.R., J. Mater. Res. 7 613 (1992).CrossRefGoogle Scholar
25.Cook, R.F. and Pharr, G.M., J. Hard Mater. 5 179 (1994).Google Scholar
26.Hay, J.C., Bolshakov, A. and Pharr, G.M. in Fundamentals of Nanondentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 263.Google Scholar
27.Swadener, J.G. and Pharr, G.M. in Thin Films: Stresses and Mechanical Properties VIII, edited by Vinci, R., Kraft, O., Moody, N., Besser, P., and Shaffer, E. II (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA, 2000), p. 525.Google Scholar
28.Pharr, G.M. and Bolshakov, A., J. Mater. Res. 17 2660 (2002).CrossRefGoogle Scholar
29.Thurn, J. and Cook, R.F., J. Mater. Res. 17 1143 (2002).CrossRefGoogle Scholar
30.Herrmann, K., Jennett, N.M., Wegener, W., Meneve, J., Hasche, K. and Seemann, R., Thin Solid Films 377 394 (2000).CrossRefGoogle Scholar
31.Cheng, Y.T. and Cheng, C.M., J. Mater. Res. 13 1059 (1998).CrossRefGoogle Scholar
32.Enders, S., Grau, P. and Hawthorne, H.M. in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q3.6.1–Q3.6.6.Google Scholar
33.McElhaney, K.W., Vlassak, J.J. and Nix, W.D., J. Mater. Res. 13 1300 (1998).CrossRefGoogle Scholar
34.Malzbender, J., de With, G. and den Toonder, J., J. Mater. Res. 15 1209 (2000).CrossRefGoogle Scholar
35.Hainsworth, S.V., Chandler, H.W. and Page, T.F., J. Mater. Res. 11 1987 (1996).CrossRefGoogle Scholar
36.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
37.Fischer-Cripps, A.C., J. Mater. Res. 18 1043 (2003).CrossRefGoogle Scholar
38.Hay, J.C., Bolshakov, A. and Pharr, G.M., J. Mater. Res. 14 2296 (1999).CrossRefGoogle Scholar
39.Shibuya, T., Koizumi, T. and Fukuchi, J., in Key Engineering Materials (Proc. of the Korea Society of Mechanical Engineers (KSME)/Japan Society of Mechanical Engineers (JSME) Joint Conferences on Fracture and Strength. Trens Tech Publications, Zurich, Switzerland, 1990), p. 417.Google Scholar
40.Akiyama, T., Hara, T., Shibuya, T. and Koizumi, T., in Theoretical and Applied Mechanics (Proc. Japan Nat. Congress App. Mech. University of Tokyo Press, Tokyo, Japan, 1995), p. 41.Google Scholar
41.Akiyama, T., Hara, T. and Shibuya, T., in Theoretical and Applied Mechanics (Proc. Japan Nat. Congress App. Mech. University of Tokyo Press, Tokyo, Japan, 1999), p. 3.Google Scholar
42.Akiyama, T., Hara, T. and Shibuya, T., in Theoretical and Applied Mechanics (Proc. Japan Nat. Congress App. Mech. University of Tokyo Press, Tokyo, Japan, 1996), p. 51.Google Scholar
43.Akiyama, T., Hara, T., and Shibuya, T., in Theoretical and Applied Mechanics (Proc. Japan Nat. Congress App. Mech. University of Tokyo Press, Tokyo, Japan, 1997), p. 197.Google Scholar
44.Shibuya, T., Koizumi, T., Inoue, H. and Fukuchi, J., Trans. Japan. Soc. Mech. Eng. A 56 1254 (1990).CrossRefGoogle Scholar
45.Hay, J.C. and Pharr, G.M. in Fundamentals of Nanondentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 39.Google Scholar
46.Ikezawa, K. and Maruyama, T., J. App. Phys. 91 9689 (2002).CrossRefGoogle Scholar
47.Lucas, B.N., Oliver, W.C. and Swindeman, J.E. in Fundamentals of Nanondentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 3.Google Scholar
48.Joslin, D.L. and Oliver, W.C., J. Mater. Res. 5 123 (1990).CrossRefGoogle Scholar
49.Page, T.F., Pharr, G.M., Hay, J.C., Oliver, W.C., Lucas, B.N., Herbert, E. and Riester, L. in Fundamentals of Nanondentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 53.Google Scholar
50.Oliver, W.C., J. Mater. Res. 16 3202 (2001).CrossRefGoogle Scholar
51.Hay, J.L., Oliver, W.C., Bolshakov, A. and Pharr, G.M. in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 101.Google Scholar
52.Lucas, B.N., Oliver, W.C., Pharr, G.M. and Loubet, J-L. in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 233.Google Scholar
53.Woodcock, C.L. and Bahr, D.F., Scripta Mater. 43 783 (2000).CrossRefGoogle Scholar
54.Hashin, Z. and Shtrikman, S., J. Mech. Phys. Solids 10 343 (1962).CrossRefGoogle Scholar
55.Bull, S.J., Z. Metall. 93 870 (2002).CrossRefGoogle Scholar
56.Page, T.F., Oliver, W.C. and McHargue, C.J., J. Mater. Res. 7 450 (1992).CrossRefGoogle Scholar
57.Bradby, J.E., Williams, J.S., Wong-Leung, J., Kucheyev, S.O., Swain, M.V. and Munroe, P., Philos. Mag. A 82 1931 (2002).CrossRefGoogle Scholar
58.Bahr, D.F., Pang, M. and Rodriquez-Marek, D. in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q4.2.1.Google Scholar
59.Gerberich, W.W., Venkataraman, S., Nelson, J., Huang, H., Lilleodden, E. and Bonin, W. in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Børgensen, P., Townsend, P.H., Ross, C.A., and Volkert, C.A. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 629.Google Scholar
60.Kucheyev, S.O., Bradby, J.E., Williams, J.S., Swain, M.V., Toth, M., Phillips, M.R. and Jagadish, C. in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q5.5.1.Google Scholar
61.Lawn, B.R., Evans, A.G. and Marshall, D.B., J. Am. Ceram. Soc. 63 574 (1980).CrossRefGoogle Scholar
62.Wiederhorn, S.M., J. Am. Ceram. Soc. 52 99 (1969).CrossRefGoogle Scholar
63.Simmons, G. and Wang, H.Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, (The M.I.T. Press, Cambridge, MA, 1971).Google Scholar