Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T09:09:44.410Z Has data issue: false hasContentIssue false

Self-assembly of polyethyleneamine-intercalated H2Ti2O5 nanoparticles into spherical agglomerates

Published online by Cambridge University Press:  26 February 2016

Makoto Kobayashi*
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
Hideki Kato
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
Masato Kakihana
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Although there are numerous reports on the synthesis of spherical materials, the development of new approaches remains important for theory construction to realize tailor-made synthesis of spherical materials. Herein, we report the synthesis of polydispersed spherical particles of H2Ti2O5 intercalated with a polyethyleneamine, such as an ethylenediamine, on the basis of a solvothermal treatment using concentrated polyethyleneamine aqueous solutions. The diameter of the micrometer-sized spheres enlarged with increasing amine concentration in the reaction solution. It was speculated that high ionic strength caused the self-assembly of polyethyleneamine-intercalated H2Ti2O5, resulting in the formation of spherical agglomerates. The spheres had a specific a surface area of 200 m2 g−1 and approximately 5 nm pores, and these values were controlled by amine concentration and treatment time. Conversion to single phase anatase and rutile without changes in spherical morphology was achieved by heat treatment. The present approach may assist with the design morphology of agglomerates.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yin, Y. and Ge, J.: Themed issue: The chemistry of photonic crystals and metamaterials. J. Mater. Chem. C 1(38), 6001 (2013).Google Scholar
Arnal, P.M., Comotti, M., and Schüth, F.: High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem., Int. Ed. 45(48), 8224 (2006).Google Scholar
Harada, T., Ikeda, S., Hashimoto, F., Sakata, T., Ikeue, K., Torimoto, T., and Matsumura, M.: Catalytic activity and regeneration property of a Pd nanoparticle encapsulated in a hollow porous carbon sphere for aerobic alcohol oxidation. Langmuir 26(22), 17720 (2010).Google Scholar
Kim, S-W., Kim, M., Lee, W-Y., and Hyeon, T.: Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc. 124(26), 7642 (2002).Google Scholar
Suzuki, T.M., Nakamura, T., Fukumoto, K., Yamamoto, M., Akimoto, Y., and Yano, K.: Direct synthesis of amino-functionalized monodispersed mesoporous silica spheres and their catalytic activity for nitroaldol condensation. J. Mol. Catal. A: Chem. 280(1–2), 224 (2008).Google Scholar
Wang, Y., Angelatos, A.S., and Caruso, F.: Template synthesis of nanostructured materials via layer-by-layer assembly. Chem. Mater. 20(3), 848 (2008).CrossRefGoogle Scholar
Liong, M., Lu, J., Kovochich, M., Xia, T., Ruehm, S.G., Nel, A.E., Tamanoi, F., and Zink, J.I.: Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5), 889 (2008).Google Scholar
Stöber, W., Fink, A., and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62 (1968).Google Scholar
Dong, Z., Ye, T., Zhao, Y., Yu, J., Wang, F., Zhang, L., Wan, X., and Guo, S.: Synthesis and characterisation of monodisperse zirconia particles. Eur. J. Inorg. Chem. 2005(15), 3149 (2005).Google Scholar
Pal, M., Serrano, J.G., Santiago, P., and Pal, U.: Size-controlled synthesis of spherical TiO2 nanoparticles: Morphology, crystallization, and phase transition. J. Phys. Chem. C 111(1), 96 (2007).Google Scholar
Jiang, X., Herricks, T., and Xia, Y.: Monodispersed spherical colloids of titania: Synthesis, characterization, and crystallization. Adv. Mater. 15(14), 1205 (2003).Google Scholar
Eiden-Assmann, S., Widoniak, J., and Maret, G.: Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles. Chem. Mater. 16(1), 6 (2004).Google Scholar
Iskandar, F., Nandiyanto, A.B.D., Yun, K.M., Hogan, C.J., Okuyama, K., and Biswas, P.: Enhanced photocatalytic performance of brookite TiO2 macroporous particles prepared by spray drying with colloidal templating. Adv. Mater. 19(10), 1408 (2007).Google Scholar
Yoshitake, H., Sugihara, T., and Tatsumi, T.: Preparation of wormhole-like mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition. Chem. Mater. 14(3), 1023 (2002).Google Scholar
Caruso, R.A., Susha, A., and Caruso, F.: Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres. Chem. Mater. 13(2), 400 (2001).Google Scholar
Zheng, Z., Huang, B., Qin, X., Zhang, X., and Dai, Y.: Strategic synthesis of hierarchical TiO2 microspheres with enhanced photocatalytic activity. Chem.-Eur. J. 16(37), 11266 (2010).Google Scholar
Yang, H.G. and Zeng, H.C.: Preparation of hollow anatase TiO2 nanospheres via ostwald ripening. J. Phys. Chem. B 108(11), 3492 (2004).Google Scholar
Chen, J.S., Tan, Y.L., Li, C.M., Cheah, Y.L., Luan, D., Madhavi, S., Boey, F.Y.C., Archer, L.A., and Lou, X.W.: Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 132(17), 6124 (2010).Google Scholar
Dong, Z., Ye, T., Zhao, Y., Yu, J., Wang, F., Zhang, L., Wan, X., and Guo, S.: Perovskite BaZrO3 hollow micro- and nanospheres: Controllable fabrication, photoluminescence and adsorption of reactive dyes. J. Mater. Chem. 21(16), 5978 (2011).Google Scholar
Zhu, G-N., Wang, Y-G., and Xia, Y-Y.: Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 5(5), 6652 (2012).Google Scholar
Sasaki, T., Izumi, F., and Watanabe, M.: Intercalation of pyridine in layered titanates. Chem. Mater. 8(3), 777 (1996).Google Scholar
Allen, M.R., Thibert, A., Sabio, E.M., Browning, N.D., Larsen, D.S., and Osterloh, F.E.: Evolution of physical and photocatalytic properties in the layered titanates A2Ti4O9 (A = K, H) and in nanosheets derived by chemical exfoliation. Chem. Mater. 22(3), 1220 (2010).Google Scholar
Krogh Andersen, E., Krogh Andersen, I.G., and Skou, E.: Proton conduction in H2Ti4O9, 1.2H2O. Solid State Ionics 27(3), 181 (1998).Google Scholar
Song, Z-Q., Xu, H-Y., Li, K-W., Wang, H., and Yan, H.: Hydrothermal synthesis and photocatalytic properties of titanium acid H2Ti2O5·H2O nanosheets. J. Mol. Catal. A: Chem. 239(1–2), 87 (2005).Google Scholar
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K.: Formation of titanium oxide nanotube. Langmuir 14(12), 3160 (1998).Google Scholar
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K.: Titania nanotubes prepared by chemical processing. Adv. Mater. 11(15), 1307 (1999).Google Scholar
Yoshida, R., Suzuki, Y., and Yoshikawa, S.: Synthesis of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J. Solid State Chem. 178(7), 2179 (2005).Google Scholar
Nakahira, A., Kato, W., Tamai, M., Isshiki, T., Nishio, K., and Aritani, H.: Synthesis of nanotube from a layered H2Ti4O9·H2O in a hydrothermal treatment using various titania sources. J. Mater. Sci. 39(13), 4239 (2004).Google Scholar
Fukuda, K., Sasaki, T., Watanabe, M., Nakai, I., Inaba, K., and Omote, K.: Novel crystal growth from a two-dimensionally bound nanoscopic system. Formation of oriented anatase nanocrystals from titania nanosheets. Cryst. Growth Des. 3(3), 281 (2003).Google Scholar
Fukuda, K., Ebina, Y., Shibata, T., Aizawa, T., Nakai, I., and Sasaki, T.: Unusual crystallization behaviors of anatase nanocrystallites from a molecularly thin titania nanosheet and its stacked forms: Increase in nucleation temperature and oriented growth. J. Am. Chem. Soc. 129(1), 202 (2007).Google Scholar
Etacheri, V., Kuo, Y., Van der Ven, A., and Bartlett, B.M.: Mesoporous TiO2-B microflowers composed of $\left( {1\overline 1 0} \right)$ facet-exposed nanosheets for fast reversible lithium-ion storage. J. Mater. Chem. A 1(39), 12028 (2013).Google Scholar
Sutradhar, N., Pahari, S.K., Jayachandran, M., Stephan, A.M., Nair, J.R., Subramanian, B., Bajaj, H.C., Mody, H.M., and Panda, A.B.: Organic free low temperature direct synthesis of hierarchical protonated layered titanates/anatase TiO2 hollow spheres and their task-specific applications. J. Mater. Chem. A 1(32), 9122 (2013).Google Scholar
Sugita, M., Tsuji, M., and Abe, M.: Synthetic inorganic ion-exchange materials. LVIII. Hydrothermal synthesis of a new layered lithium titanate and its alkaki ion exchange. Bull. Chem. Soc. Jpn. 63(7), 1978 (1990).Google Scholar
Andersson, S. and Wadsley, A.D.: The crystal structure of K2Ti2O5 . Acta Chem. Scand. 15(3), 663 (1961).Google Scholar
Wu, C., Lei, L., Zhu, X., Yang, J., and Xie, Y.: Large-scale synthesis of titanate and anatase tubular hierarchitectures. Small 3(9), 1518 (2007).Google Scholar
Kobayashi, M., Kato, H., and Kakihana, M.: Synthesis of spindle and square bipyramid-shaped anatase-type titanium dioxide crystals by a solvothermal method using ethylenediamine. J. Ceram. Soc. Jpn. 120(11), 494 (2012).Google Scholar
Kobayashi, M., Kato, H., and Kakihana, M.: Synthesis of titanium dioxide nanocrystals with controlled crystal- and micro-structures from titanium complexes. Nanomater. Nanotechnol. 3(23), 1 (2013).Google Scholar
Kakihana, M., Tada, M., Shiro, M., Petrykin, V., Osada, M., and Nakamura, Y.: Structure and stability of water soluble (NH4)8[Ti4(C6H4O7)4(O2)4]·8H2O. Inorg. Chem. 40(5), 891 (2001).Google Scholar
Kakihana, M., Kobayashi, M., Tomita, K., and Petrykin, V.: Application of water-soluble titanium complexes as precursors for synthesis of titanium-containing oxides via aqueous solution processes. Bull. Chem. Soc. Jpn. 83(11), 1285 (2010).Google Scholar
Krishnan, K. and Plane, R.A.: Raman and infrared spectra of complexes of ethylenediamine with zinc(II), cadmium(II), and mercury(II). Inorg. Chem. 5(5), 852 (1966).Google Scholar
Lazzeri, M., Vittadini, A., and Selloni, A.: Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B: Condens. Matter Mater. Phys. 63(15), 155409 (2001).Google Scholar
Oliver, P.M., Watso, G.W., Kelsey, E.T., and Parker, S.C.: Atomistic simulation of the surface structure of the TiO2 polymorphs rutileand anatase. J. Mater. Chem. 7(3), 563 (1997).Google Scholar
Look, J.-L., Bogush, G.H., and Zukoski, C.F.: Colloidal interactions during the precipitation of uniform submicrometre particles. Faraday Discuss. Chem. Soc. 90, 345 (1990).Google Scholar
Kobayashi, M., Petrykin, V., Tomita, K., and Kakihana, M.: Hydrothermal synthesis of brookite-type titanium dioxide with snowflake-like nanostructures using a water-soluble citratoperoxotitanate complex. J. Cryst. Growth 337(1), 30 (2011).Google Scholar
Chen, D., Cao, L., Huang, F., Imperia, P., Cheng, Y.-B., and Caruso, R.A.: Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14–23 nm). J. Am. Chem. Soc. 132(12), 4438 (2010).Google Scholar
Kanie, K., Seino, Y., Matsubara, M., Nakaya, M., and Muramatsu, A.: Hydrothermal synthesis of BaZrO3 fine particles controlled in size and shape and fluorescence behavior by europium doping. New J. Chem. 38(8), 3548 (2014).Google Scholar
Supplementary material: File

Kobayashi supplementary material

Kobayashi supplementary material 1

Download Kobayashi supplementary material(File)
File 6.7 MB