Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T14:11:28.515Z Has data issue: false hasContentIssue false

Selective-area growth of III-V nanowires and their applications

Published online by Cambridge University Press:  26 July 2011

Katsuhiro Tomioka*
Affiliation:
Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics, Hokkaido University, Sapporo 060-8628, Japan; and Japan Science and Technology Agency—Precursory Research for Embryonic Science and Technology, Kawaguchi-shi, Saitama 332-0012, Japan
Keitaro Ikejiri
Affiliation:
Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics, Hokkaido University, Sapporo 060-8628, Japan
Tomotaka Tanaka
Affiliation:
Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics, Hokkaido University, Sapporo 060-8628, Japan
Junichi Motohisa
Affiliation:
Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics, Hokkaido University, Sapporo 060-8628, Japan
Shinjiroh Hara
Affiliation:
Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics, Hokkaido University, Sapporo 060-8628, Japan
Kenji Hiruma
Affiliation:
Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics, Hokkaido University, Sapporo 060-8628, Japan
Takashi Fukui*
Affiliation:
Graduate School of Information Science and Technology, and Research Center for Integrated Quantum Electronics, Hokkaido University, Sapporo 060-8628, Japan
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

We review the position-controlled growth of III-V nanowires (NWs) by selective-area metal-organic vapor-phase epitaxy (SA-MOVPE). This epitaxial technique enables the positioning of the vertical NWs on (111) oriented surfaces with lithographic techniques. Core-shell structures have also been achieved by controlling the growth mode during SA-MOVPE. The core-shell III-V NW-based devices such as light-emitting diodes, photovoltaic cells, and vertical surrounding-gate transistors are discussed in this article. Nanometer-scale growth also enabled the integration of III-V NWs on Si regardless of lattice mismatches. These demonstrated achievements should have broad applications in laser diodes, photodiodes, and high-electron mobility transistors with functionality on Si not made possible with conventional Si-CMOS techniques.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

1.Hiruma, K., Yazawa, M., Katsuyama, T., Ogawa, K., Haraguchi, K., Koguchi, M., and Kakibayashi, H.: Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77, 447 (1995).CrossRefGoogle Scholar
2.Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.H., and Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313 (2001).CrossRefGoogle ScholarPubMed
3.Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).CrossRefGoogle ScholarPubMed
4.Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., and Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617 (2002).CrossRefGoogle ScholarPubMed
5.Lauhon, L.J., Gudiksen, M.S., Wang, D., and Lieber, C.M.: Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57 (2002).CrossRefGoogle ScholarPubMed
6.Johnson, J.C., Choi, H.-J., Knutsen, K.P., Schaller, R.D., Yang, P., and Saykally, R.J.: Single gallium nitride nanowire lasers. Nat. Mater. 1, 106 (2002).CrossRefGoogle ScholarPubMed
7.Wagner, R.S. and Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
8.Hiruma, K., Katsuyama, T., Ogawa, K., Koguchi, M., Kakibayashi, H., and Morgan, G.P.: Quantum size microcrystals grown using organometallic vapor phase epitaxy. Appl. Phys. Lett. 59, 431 (1991).CrossRefGoogle Scholar
9.Björk, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., Magnusson, M.H., Deppert, K., Wallengerg, L.R., and Samuelson, L.: One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 80, 1058 (2002).CrossRefGoogle Scholar
10.Yan, Z.X. and Milnes, A.G.: Deep level transient spectroscopy of silver and gold levels in LEC grown gallium arsenide. J. Electrochem. Soc. 129, 1353 (1982).CrossRefGoogle Scholar
11.Morral, A.F.i., Colombo, C., Abstreiter, G., Arbiol, J., and Morante, J.R.: Nucleation mechanism of gallium-assisted molecular-beam-epitaxy growth of gallium arsenide nanowires. Appl. Phys. Lett. 92, 063112 (2008).CrossRefGoogle Scholar
12.Mandl, B., Stangl, J., Hilner, E., Zakharov, A.A., Hilletich, K., Dey, A.W., Samuelson, L., Bauer, G., Deppert, K., and Mikkelsen, A.: Growth mechanism of self-catalyzed group III-V nanowires. Nano Lett. 10, 4443 (2010).CrossRefGoogle ScholarPubMed
13.Joyce, B.D. and Baldrey, J.A.: Selective epitaxial deposition of silicon. Nature 195, 485 (1962).CrossRefGoogle Scholar
14.Tausch, F.W. and Lapierre, A.G.: A novel crystal growth phenomenon: Single crystal GaAs overgrowth onto silicon dioxide. J. Electrochem. Soc. 112, 706 (1965).CrossRefGoogle Scholar
15.Rai-Choudhury, P.: Epitaxial gallium arsenide from trimethyl gallium and arsine. J. Electrochem. Soc. 116, 1745 (1969).CrossRefGoogle Scholar
16.Jones, S.H. and Lau, K.M.: Selective area growth of high quality GaAs by OMCVD using native oxide masks. J. Electrochem. Soc. 134, 3149 (1987).CrossRefGoogle Scholar
17.Fukui, T. and Ando, S.: New GaAs quantum wires on <111>B facets by selective MOCVD. Electron. Lett. 25, 410 (1989).CrossRefGoogle Scholar
18.Fukui, T., Ando, S., Tokura, Y., and Toriyama, T.: GaAs tetrahedral quantum dot structure fabricated using selective area metalorganic chemical vapor deposition. Appl. Phys. Lett. 58, 2018 (1991).CrossRefGoogle Scholar
19.Kumakura, K., Nakakoshi, K., Motohisa, J., Fukui, T., and Hasegawa, H.: Novel formation method of quantum dot structures by self-limited selective area metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 34, 4387 (1995).CrossRefGoogle Scholar
20.Nakajima, F., Miyoshi, Y., Motohisa, J., and Fukui, T.: Single-electron AND/NAND logic circuits based on a self-organized dot network. Appl. Phys. Lett. 83, 2680 (2003).CrossRefGoogle Scholar
21.Miyoshi, Y., Nakajima, F., Motohisa, J., and Fukui, T.: A 1 bit binary-decision-diagram adder circuit using single-electron transistors made by selective-area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 87, 033501 (2005).CrossRefGoogle Scholar
22.Ando, S., Kobayashi, N., and Ando, H.: Selective area metalorganic chemical vapor deposition growth for hexagonal facet lasers. J. Cryst. Growth 145, 302 (1994).CrossRefGoogle Scholar
23.Hamano, T., Hirayama, H., and Aoyagi, Y.: New technique for fabrication of two-dimensional photonic bandgap crystals by selective epitaxy. Jpn. J. Appl. Phys. 36, L286 (1997).CrossRefGoogle Scholar
24.Motohisa, J., Noborisaka, J., Takeda, J., Inari, M., and Fukui, T.: Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates. J. Cryst. Growth 272, 180 (2004).CrossRefGoogle Scholar
25.Noborisaka, J., Motohisa, J., and Fukui, T.: Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 86, 213102 (2005).CrossRefGoogle Scholar
26.Ikejiri, K., Noborisaka, J., Hara, S., Motohisa, J., and Fukui, T.: Mechanism of catalyst-free growth of GaAs nanowires by selective area MOVPE. J. Cryst. Growth 298, 616 (2007).CrossRefGoogle Scholar
27.Ikejiri, K., Sato, T., Yoshida, H., Hiruma, K., Motohisa, J., Hara, S., and Fukui, T.: Growth characteristics of GaAs nanowires obtained by selective area metal-organic vapour-phase epitaxy. Nanotechnology 19, 265604 (2008).CrossRefGoogle ScholarPubMed
28.Mohan, P., Motohisa, J., and Fukui, T.: Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 16, 2903 (2005).CrossRefGoogle Scholar
29.Kitauchi, Y., Kobayashi, Y., Tomioka, K., Hara, S., Hiruma, K., Fukui, T., and Motohisa, J.: Structural transition in indium phosphide nanowires. Nano Lett. 10, 1699 (2010).CrossRefGoogle ScholarPubMed
30.Tomioka, K., Mohan, P., Noborisaka, J., Hara, S., Motohisa, J., and Fukui, T.: Growth of highly uniform InAs nanowire arrays by selective-area MOVPE. J. Cryst. Growth 298, 644 (2007).CrossRefGoogle Scholar
31.Akabori, M., Sladek, K., Hardtdegen, H., Schäoers, Th., and Grützmacher, D.: Influence of growth temperature on the selective area MOVPE of InAs nanowries on GaAs(111)B using N2 carrier gas. J. Cryst. Growth 311, 3813 (2009).CrossRefGoogle Scholar
32.Akabori, M., Takeda, J., Motohisa, J., and Fukui, T.: InGaAs nano-pillar array formation on partially masked InP(111)B by selective area metal-organic vapour phase epitaxial growth for two-dimensional photonic crystal application. Nanotechnology 14, 1071 (2003).CrossRefGoogle Scholar
33.Sato, T., Motohisa, J., Noborisaka, J., Hara, S., and Fukui, T.: Growth of InGaAs nanowires by selective-area metalorganic vapor phase epitaxy. J. Cryst. Growth 310, 2359 (2008).CrossRefGoogle Scholar
34.Sato, T., Kobayashi, Y., Motohisa, J., Hara, S., and Fukui, T.: SA-MOVPE of InGaAs nanowires and their compositions studied by micro-PL measurement. J. Cryst. Growth 310, 5111 (2008).CrossRefGoogle Scholar
35.Yoshimura, M., Tomioka, K., Hiruma, K., Hara, S., Motohisa, J., and Fukui, T.: Growth and characterization of InGaAs nanowires formed on GaAs(111)B by selective-area metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 49, 04DH08 (2010).CrossRefGoogle Scholar
36.Fujisawa, S., Sato, T., Hara, S., Motohisa, J., Hiruma, K., and Fukui, T.: Growth and characterization of a GaAs quantum well buried in GaAsP/GaAs vertical heterostructure nanowires by selective-area metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 50, 04DH03 (2011).CrossRefGoogle Scholar
37.Sekiguchi, H., Kishino, K., and Kikuchi, A.: Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett. 96, 231104 (2010).CrossRefGoogle Scholar
38.Kim, Y.-J., Lee, C.-H., Hong, Y.J., Yi, G.-C., Kim, S.S., and Cheong, H.: Controlled selective growth of ZnO nanorod and microrod arrays on Si substrate by a wet chemical method. Appl. Phys. Lett. 89, 163128 (2006).CrossRefGoogle Scholar
39.Noborisaka, J., Motohisa, J., Hara, S., and Fukui, T.: Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 87, 093109 (2005).CrossRefGoogle Scholar
40.Mohan, P., Motohisa, J., and Fukui, T.: Realization of conductive InAs nanotubes based on lattice-mismatched InP/InAs core-shell nanowires. Appl. Phys. Lett. 88, 013110 (2006).CrossRefGoogle Scholar
41.Hua, B., Motohisa, J., Kobayashi, Y., Hara, S., and Fukui, T.: Single GaAs/GaAsP coaxial core-shell nanowire laser. Nano Lett. 9, 112 (2009).CrossRefGoogle Scholar
42.Mohan, P., Motohisa, J., and Fukui, T.: Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 88, 133105 (2006).CrossRefGoogle Scholar
43.Yang, L., Motohisa, J., Takeda, J., Tomioka, K., and Fukui, T.: Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence. Nanotechnology 18, 105302 (2007).CrossRefGoogle Scholar
44.Shapiro, J.N., Lin, A., Wong, P.S., Scofield, A.C., Tu, C., Senanayake, P.N., Mariani, G., Liang, B.L., and Huffaker, D.L.: InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy. Appl. Phys. Lett. 97, 243102 (2010).CrossRefGoogle Scholar
45.Sasakura, H., Humano, K., Suemune, I., Motohisa, J., Kobayashi, Y., van Kouwen, M., Tomioka, K., Fukui, T., Akopian, N., and Zwiller, V.: Exciton coherence in clean single InP/InAsP/InP nanowire quantum dots emitting in infra-red measured by Fourier spectroscopy. J. Phys. Conf. Ser. 193, 012132 (2009).CrossRefGoogle Scholar
46.Hayashida, A., Sato, T., Hara, S., Motohisa, J., Hiruma, K., and Fukui, T.: Fabrication and characterization of GaAs quantum well buried in AlGaAs/GaAs heterostructure nanowires. J. Cryst. Growth 312, 3592 (2010).CrossRefGoogle Scholar
47.Shi, W.S., Zheng, Y.F., Wang, N., Lee, C.S., and Lee, S.T.: Oxide-assisted growth and optical characterization of gallium-arsenide nanowires. Appl. Phys. Lett. 78, 3304 (2001).CrossRefGoogle Scholar
48.Dobrusin, R.L., Kotechy, R., and Shlosman, S.: Wulff Construction: A Global Shape from Local Interactions. (American Mathematical Society, Providence, 1993).Google Scholar
49.Li, C.H., Sun, Y., Law, D.C., Visbeck, S.B., and Hicks, R.F.: Reconstructions of the InP(111)A surface. Phys. Rev. B 68, 085320 (2003).CrossRefGoogle Scholar
50.Biegelsen, D.K., Bringans, R.D., Northrup, J.E., and Swartz, L.-E.: Reconstructions of GaAs(-1-1-1) surfaces observed by scanning tunneling microscopy. Phys. Rev. Lett. 65, 452 (1990).CrossRefGoogle Scholar
51.Tomioka, K., Motohisa, J., Hara, S., and Fukui, T.: Control of InAs nanowire growth directions on Si. Nano Lett. 8, 3475 (2008).CrossRefGoogle ScholarPubMed
52.Tomioka, K., Kobayashi, Y., Motohisa, J., Hara, S., and Fukui, T.: Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate. Nanotechnology 20, 145302 (2009).CrossRefGoogle ScholarPubMed
53.Tomioka, K., Tanaka, T., Hara, S., Hiruma, K., and Fukui, T.: III-V nanowires on Si substrate: Selective-area growth and device applications. IEEE J. Select. Top. Quantum Elec. Early access (2011).CrossRefGoogle Scholar
54.Hertenberger, S., Rudolph, D., Bichler, M., Findley, J.J., Abstreiter, G., and Koblmüller, G.: Growth kinetics in position-controlled and catalyst-free InAs nanowrie arrays on Si(111) grown by selective area molecular beam epitaxy. J. Appl. Phys. 108, 114316 (2010).CrossRefGoogle Scholar
55.Sladek, K., Klinger, V., Wensorra, J., Akabori, M., Hardtdegen, H., and Grützmacher, D.: MOVPE of n-doped GaAs and modulation doped GaAs/AlGaAs nanowires. J. Cryst. Growth 312, 65 (2010).CrossRefGoogle Scholar
56.Skromme, B.J., Sandroff, C.J., Yablonovitch, E., and Gmitter, T.: Effects of passivation ionic films on the photoluminesnce properties of GaAs. Appl. Phys. Lett. 51, 2022 (1987).CrossRefGoogle Scholar
57.Borgström, M.T., Zwiller, V., Muller, E., and Imamoglu, A.: Optically bright quantum dots in single nanowire. Nano Lett. 5, 1439 (2005).CrossRefGoogle Scholar
58.Dorenbos, S.N., Sasakura, H., van Kouwen, M.P., Akopian, N., Adachi, S., Namekata, N., Jo, M., Motohisa, J., Kobayashi, Y., Tomioka, K., Fukui, T., Inoue, S., Kumano, H., Natarajan, C.M., Hadfield, R.H., Zijlstra, T., Klapwijk, T.M., and Suemune, I.: Position controlled nanowires for infrared single photon emission. Appl. Phys. Lett. 97, 171106 (2010).CrossRefGoogle Scholar
59.Goto, H., Nosaki, K., Tomioka, K., Hara, S., Hiruma, K., Motohisa, J., and Fukui, T.: Growth of core-shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Exp. 2, 035004 (2009).CrossRefGoogle Scholar
60.Kikuchi, A., Kawai, M., Tada, M., and Kishino, K.: InGaN/GaN multiple quantum disks nanocolumn light-emitting diodes grown on (111) Si substrate. Jpn. J. Appl. Phys. 43, L1524 (2004).CrossRefGoogle Scholar
61.Qian, F., Gradečak, S., Li, Y., Wen, C.-Y., and Lieber, C.M.: Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287 (2005).CrossRefGoogle ScholarPubMed
62.Tomioka, K., Motohisa, J., Hara, S., Hiruma, K., and Fukui, T.: GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 10, 1639 (2010).CrossRefGoogle ScholarPubMed
63.Svensson, C.P.T., Martensson, T., Tragardh, J., Larsson, C., Rask, M., Hessman, D., Samuelson, L., and Ohlsson, J.: Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechology 19, 305201 (2008).CrossRefGoogle ScholarPubMed
64.Chuang, L.C., Sedgwick, F.G., Chen, R., Ko, W.S., Moewe, M., Ng, K.W., Tran, T.T., and C-Hasnain, C.: GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate. Nano Lett. 11, 385 (2011).CrossRefGoogle ScholarPubMed
65.An, S.J., Chae, J.H., Yi, G.-C., and Park, G.H.: Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett. 92, 121108 (2008).CrossRefGoogle Scholar
66.Lee, C.-H., Yoo, J., Hong, Y.J., Cho, J., Kim, Y.-J., Jeon, S.-R., Baek, J.H., and Yi, G.-C.: GaN/In1-xGaxN/GaN/ZnO nanoarchitecture light emitting diode microarrays. Appl. Phys. Lett. 94, 213101 (2009).CrossRefGoogle Scholar
67.Lai, E., Kim, W., and Yang, P.: Vertical nanowire array-based light emitting diodes. Nano Res. 1, 123 (2008).CrossRefGoogle Scholar
68.Lin, H.-W., Lu, Y.-J., Chen, H.-Y., Lee, H.-M., and Gwo, S.: InGaN/GaN nanorod array white light-emitting diode. Appl. Phys. Lett. 97, 073101 (2010).CrossRefGoogle Scholar
69.Schubert, E.F.: Light-Emitting Diodes, 2nd ed (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
70.Ray, S.K., Groom, M., Liu, H.Y., Hopkinson, M., and Hogg, R.A.: Broad-band superluminescent light emitting diodes incorporating quantum dots in compositionally modulated quantum wells. Jpn. J. Appl. Phys. 45, 2542 (2006).CrossRefGoogle Scholar
71.Hu, L. and Chen, G.: Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249 (2007).CrossRefGoogle ScholarPubMed
72.Kayes, B.M., Atwater, H.A., and Lewis, N.S.: Comparison of the device physics principles of planar and radial p-n junction nanorod solar cell. J. Appl. Phys. 97, 114302 (2005).CrossRefGoogle Scholar
73.Kandala, A., Betti, T., and Morral, A.F.I.: General theoretical considerations on nanowire solar cell designs. Phys. Status Solidi A 206, 173 (2009).CrossRefGoogle Scholar
74.Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J., and Lieber, C.M.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007).CrossRefGoogle ScholarPubMed
75.Kempa, T.J., Tian, B., Kim, D.R., Hu, J., Zheng, X., and Lieber, C.M.: Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8, 3456 (2008).CrossRefGoogle ScholarPubMed
76.Keizenberg, M.D., Turner-Evans, D.B., Kayes, B.M., Filler, M.A., Putnam, M.C., Lewis, N.S., and Atwater, H.A.: Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8, 710 (2008).CrossRefGoogle Scholar
77.Colombo, C., Heiß, M., Grätzel, M., and Morral, A.F.I.: Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94, 173108 (2009).CrossRefGoogle Scholar
78.Wei, W., Bao, X.-Y., Soci, C., Ding, Y., Wang, Z.-L., and Wang, D.: Direct heteroepitaxy of vertical InAs nanowires on Si substrate for broad band photovoltaics and photodetection. Nano Lett. 9, 2926 (2009).CrossRefGoogle ScholarPubMed
79.Mariani, G., Laghumavarapu, R.B., de Villers, B.T., Shapiro, J., Senanayake, P., Lin, A., Schwartz, B.J., and Huffaker, D.L.: Hybrid conjugated polymer solar cells using patterned GaAs nanopillars. Appl. Phys. Lett. 97, 013107 (2010).CrossRefGoogle Scholar
80.Sugo, M., Yamamoto, A., Yamaguchi, M., and Uemura, C.: High-efficiency InP solar cells with n+-p-p+ structure grown by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 24, 1243 (1985).CrossRefGoogle Scholar
81.Xiang, J., Hu, Y., Wu, Y., Yan, H., and Lieber, C.M.: Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489 (2006).CrossRefGoogle ScholarPubMed
82.Zhang, L., Tu, R., and Dai, H.: Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors. Nano Lett. 6, 2785 (2006).CrossRefGoogle ScholarPubMed
83.Noborisaka, J., Sato, T., Motohisa, J., Hara, S., Tomioka, K., and Fukui, T.: Electrical characterizations of InGaAs nanowire-top-gate field-effect transistors by selective-area metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 46, 7562 (2007).CrossRefGoogle Scholar
84.Jiang, X., Xiong, Q., Nam, S., Qian, F., Li, Y., and Lieber, C.M.: InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7, 3214 (2007).CrossRefGoogle ScholarPubMed
85.Do, Q.-T., Blekker, K., Regolin, I., Prost, W., and Tegude, F.J.: High transconductance MISFET with a single InAs nanowire channel. IEEE Elec. Dev. Lett. 28, 682 (2007).CrossRefGoogle Scholar
86.Yeom, D., Keem, K., Kang, J., Jeong, D-Y., Yoon, C., Kim, D., and Kim, S.: NOT and NAND logic circuits composed of top-gate ZnO nanowire field-effect transistors with high-k Al2O3 gate layers. Nanotechnology 19, 265502 (2008).CrossRefGoogle ScholarPubMed
87.Ng, H.T., Han, J., Yamada, T., Nguyen, P., Chen, Y.P., and Meyyappan, M.: Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4, 1247 (2004).CrossRefGoogle Scholar
88.Schmidt, V., Riel, H., Senz, S., Karg, S., Riess, W., and Gösele, U.: Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2, 85 (2006).CrossRefGoogle ScholarPubMed
89.Rehnstedt, C., Mårtensson, T., Thelander, C., Samuelson, L., and Wernersson, L.-E.: Vertical InAs nanowire wrap gate transistors on Si substrate. IEEE Trans. Electron. Devices 55, 3037 (2008).CrossRefGoogle Scholar
90.Björk, M.T., Hayden, O., Schmid, H., Riel, H., and Riess, W.: Vertical surround-gate silicon nanowire impact ionization field-effect transistors. Appl. Phys. Lett. 90, 142110 (2007).CrossRefGoogle Scholar
91.Tanaka, T., Tomioka, K., Hara, S., Motohisa, J., Sano, E., and Fukui, T.: Vertical surrounding gate transistors using single InAs nanowires grown on Si substrate. Appl. Phys. Exp. 3, 025003 (2010).CrossRefGoogle Scholar
92.Radosavljevic, M., Dewey, G., Fanstenau, J.M., Kavalieros, J., Kotlayer, R., Chu-Kung, B., Liu, W.K., Lubyshev, D., Metz, M., Millard, K., Mukherjee, N., Pan, L., Pillarisetty, R., Rachmady, W., Shah, U., and Chau, R.: Non-planar, multi-gate InGaAs Quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic application. Abstract in 2010 Int. Elec. Dev. Meeting (IEDM) p. 6.1.1 (2010).CrossRefGoogle Scholar
93.Björk, M.T., Knoch, J., Schmid, H., Riel, H., and Riess, W.: Silicon nanowire tunneling field-effect transistors. Appl. Phys. Lett. 92, 193504 (2008).CrossRefGoogle Scholar
94.Kwon, S.H., Kang, J.H., Seassal, C., Kim, S.K., Regreny, P., Lee, Y.H., Lieber, C.M., and Park, H.G.: Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10, 3679 (2010).CrossRefGoogle ScholarPubMed
95.Im, H., Lindquist, N.C., Lesuffleur, A., and Oh, S.H.: Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. ACS Nano. 4, 947 (2010).CrossRefGoogle ScholarPubMed
96.Björk, M.T., Schmid, H., Bessire, C.D., Moselundm, K. E. Ghoneim, H., Karg, S., Lörtscher, E., and Riel, H.: Si-InAs heterojunction Esaki tunnel diodes with high current densities. Appl. Phys. Lett. 97, 163501 (2010).CrossRefGoogle Scholar
97.Tomioka, K. and Fukui, T.: Tunnel field-effect transistor using InAs nanowire/Si heterojunction. Appl. Phys. Lett. 98, 083114 (2011).CrossRefGoogle Scholar