Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T14:29:12.526Z Has data issue: false hasContentIssue false

Selective growth and kinetic study of copper oxide nanowires from patterned thin-film multilayer structures

Published online by Cambridge University Press:  31 January 2011

Nitin Chopra
Affiliation:
Chemical and Materials Engineering Department, University of Kentucky, Lexington, Kentucky 40506
Bing Hu
Affiliation:
Chemical and Materials Engineering Department, University of Kentucky, Lexington, Kentucky 40506
Bruce J. Hinds*
Affiliation:
Chemical and Materials Engineering Department, University of Kentucky, Lexington, Kentucky 40506
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Selective growth of CuO nanowires on the etched face of Al2O3/Cu/Al2O3 thin-film multilayer patterns was achieved by ambient oxidation at 400 °C. The nanowires were observed to selectively grow only from the pattern edge with diameter limited by the thickness of Cu thin film. Transmission-electron-microscopy (TEM) characterization confirmed CuO nanowires of a monoclinic CuO growing in the [010] crystallographic direction. Nanowire growth kinetics was studied at 400 °C for different cumulative growth durations with initial growth rates of ∼1 nm/min. A base growth mechanism with kinetics limited by oxygen diffusion through defects of a scaling oxide film is consistent with observed kinetics. The oxygen diffusivity is found to be ∼10−11 cm2/s, consistent with the grain-boundary diffusion of oxygen through polycrystalline copper oxide.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zhang, D.H., Liu, Z.Q., Li, C., Tang, T., Liu, X.L., Han, S., Lei, B.Zhou, C.W.: Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4(10), 1919 2004CrossRefGoogle Scholar
2Jo, S.H., Banerjee, D.Ren, Z.F.: Field emission of zinc oxide nanowires grown on carbon cloth. Appl. Phys. Lett. 85(8), 1405 2004Google Scholar
3Zhong, Z.H., Wang, D.L., Cui, Y., Bockrath, M.W.Lieber, C.M.: Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377 2003CrossRefGoogle ScholarPubMed
4Ancona, M.G., Kooi, S.E., Kruppa, W., Snow, A.W., Foos, E.E., Whitman, L.J., Park, D.Shirey, L.: Patterning of narrow Au nanocluster lines using V2O5 nanowire masks and ion beam milling. Nano Lett. 3(2), 135 2003CrossRefGoogle Scholar
5Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J.F.Lieber, C.M.: Diameter-controlled synthesis of single crystal silicon nanowires. Appl. Phys. Lett. 78(15), 2214 2001CrossRefGoogle Scholar
6Cheung, C.L., Kurtz, A., Park, H.Lieber, C.M.: Diameter controlled synthesis of carbon nanotubes. J. Phys. Chem. B 106, 2429 2002CrossRefGoogle Scholar
7Bogart, T.E., Dey, S., Lew, K.K., Mohney, S.E.Redwing, J.M.: Diameter controlled synthesis of silicon nanowires using nanoporous alumina membranes. Adv. Mater. 17(1), 114 2005CrossRefGoogle Scholar
8Chopra, N., Kichambare, P.D., Andrews, R.Hinds, B.J.: Control of multiwalled carbon nanotube diameter by selective growth on the exposed edge of a thin film multilayer structure. Nano Lett. 2(10), 1177 2002Google Scholar
9Franklin, N.R.Dai, H.: An enhanced CVD approach to extensive nanotube networks with directionality. Adv. Mater. 12(12), 890 20003.0.CO;2-K>CrossRefGoogle Scholar
10Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M.Dai, H.J.: Self-oriented regular arrays of carbon nanotubes and their field-emission properties. Science 283, 512 1999CrossRefGoogle ScholarPubMed
11Zhong, Z.H., Wang, D.L., Cui, Y., Bockrath, M.W.Lieber, C.M.: Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377 2003CrossRefGoogle ScholarPubMed
12Islam, M.S., Sharma, S., Kamins, T.I.Williams, R.S.: Ultrahigh density silicon nanobridges formed between two vertical silicon surfaces. Nanotechnology 15, L5 2004CrossRefGoogle Scholar
13Haraguchi, K., Hiruma, K., Katsuyama, T., Tominaga, K., Shirai, M.Shimada, T.: Self organized fabrication of planar GaAs nanowhisker arrays. Appl. Phys. Lett. 69(3), 386 1995CrossRefGoogle Scholar
14Lefebvre, J., Radosavljevic, M.Johnson, A.T.: Fabrication of nanometer size gaps in a metallic wire. Appl. Phys. Lett. 76, 3828 2000CrossRefGoogle Scholar
15Chopra, N., Xu, W.T., De Long, L.E.Hinds, B.J.: Suspended carbon nanotube shadow lithography: Incident evaporation angle dependence in Nontraditional Approaches to Patterning edited by S. Yang, Y. Xia, J. Liu, and C.D.E. Lakeman Mater. Res. Soc. Symp. Proc. EXS-2 Warrendale, PA 2003 M5.4Google Scholar
16Chopra, N., Xu, W.T., De Long, L.E.Hinds, B.J.: Incident angle dependence of nanogap size in suspended carbon nanotube shadow lithography. Nanotechnology 16, 133 2005CrossRefGoogle Scholar
17Dai, Z.R., Pan, Z.W.Wang, Z.L.: Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13(1), 9 2003CrossRefGoogle Scholar
18Xu, C.H., Woo, C.H.Shi, S.Q.: Formation of CuO nanowires on Cu foil. Chem. Phys. Lett. 399, 62 2004Google Scholar
19Reitz, J.B.Solomon, E.I.: Propylene oxidation on copper oxide surface: electronic and geometric contributions to reactivity and selectivity. J. Am. Chem. Soc. 120, 11467 1998CrossRefGoogle Scholar
20Miyayama, M., Hikita, K., Uozumi, G.Yanagida, H.: A.C. impedance analysis of gas sensing property in CuO/ZnO heterocontacts. Sens. Actuators, B 24–25, 383 1995CrossRefGoogle Scholar
21Musa, A.O., Akomolafe, T.Carter, M.J.: Production of cuprous oxide, a solar cell material by thermal oxidation and a study of its physical and electrical properties. Sol. Energy Mater. Sol. Cells 51, 305 1998CrossRefGoogle Scholar
22Ali, S.I.Wood, G.C.: The influence of crystallographic orientation on the oxidation of Cu. Corros. Sci. 8, 413 1968CrossRefGoogle Scholar
23Kaito, C., Nakata, Y., Saito, Y., Naiki, T.Fujita, K.: Electron microscope studies on structures and reduction process of copper oxide whiskers. J. Cryst. Growth 74, 469 1986CrossRefGoogle Scholar
24Gulbransen, E.A., Copan, T.P.Andrew, K.F.: Oxidation of copper between 250° and 450° C and the growth of CuO whiskers. J. Electrochem. Soc. 108(2), 119 1960CrossRefGoogle Scholar
25Lasko, W.R.Tice, W.K.: Determination of the surface population of copper oxide whiskers by electron-microscopy techniques. Anal. Chem. 34(13), 1795 1962CrossRefGoogle Scholar
26Homma, T.Issiki, S.: Role of oxide whisker growth in the oxidation kinetics of pure copper. Acta Metall. 12, 1092 1964CrossRefGoogle Scholar
27Wang, W.Z., Wang, G.H., Wang, X.S., Zhan, Y.J., Liu, Y.K.Zheng, C.L.: Synthesis and characterization of Cu2O nanowires by novel reduction route. Adv. Mater. 14(1), 67 20023.0.CO;2-Z>CrossRefGoogle Scholar
28Hsieh, C.T., Chen, J.M., Lin, H.H.Shih, H.C.: Synthesis of well ordered CuO nanofibers by a self-catalytic growth mechanism. Appl. Phys. Lett. 82(19), 3316 2003CrossRefGoogle Scholar
29Jiang, K., Herricks, T.Xia, Y.: CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2(12), 1333 2002CrossRefGoogle Scholar
30Huang, L.S., Yang, S.G., Li, T., Gu, B.X., Du, Y.W., Lu, Y.N.Shi, S.Z.: Preparation of large scale cupric oxide nanowires by thermal evaporation method. J. Cryst. Growth 260, 130 2004CrossRefGoogle Scholar
31Wang, S.: Thermal oxidation of Cu2S nanowires: A template method for the fabrication of mesoscopic CuxO (x = 1, 2) wires. Phys. Chem. Chem. Phys. 4, 3425 2002Google Scholar
32Kumar, A., Srivastava, A.K., Tiwari, P.Nandedkar, R.V.: The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J. Phys.: Condens. Matter 16, 8531 2004Google Scholar
33Brenner, S.S.Sears, G.W.: Mechanism for whisker growth. III. Nature of growth sites. Acta Metall. 4, 268 1956CrossRefGoogle Scholar
34Hsu, Y.J.Lu, S.Y.: Vapor-solid growth of Sn nanowires: Growth mechanism and superconductivity. J. Phys. Chem. B 109, 4398 2005CrossRefGoogle ScholarPubMed
35Vaddiraju, S., Chandrashekharan, H.Sunkara, M.K.: Vapor phase synthesis of tungsten nanowires. J. Am. Chem. Soc. 125, 10792 2003CrossRefGoogle ScholarPubMed
36Gu, G., Zheng, B., Han, W.Q., Roth, S.Liu, J.: Tungsten oxide nanowires on tungsten substrates. Nano Lett. 2(8), 849 2002CrossRefGoogle Scholar
37Chopra, N.Hinds, B.J.: Catalytic size control of multiwalled carbon nanotube diameter in xylene chemical vapor deposition process. Inorg. Chim. Acta 357(13), 3920 2004CrossRefGoogle Scholar
38Echigoya, J., Mumtaz, K., Hayasaka, Y.Aoyagi, E.: Electron microscopic study of sputter-deposited Ir films. J. Mater. Sci. 39, 6215 2004CrossRefGoogle Scholar
39Wallwork, G.R.Smeltzer, W.W.: The oxide scale on Cu in the temperature range 300–600° C. Corros. Sci. 9, 561 1969CrossRefGoogle Scholar
40Busch, H., Fink, A., Muller, A.Samwer, K.: Occurrence and origin of copper oxide particulates prior to the deposition of YBaCuO thin films. Superconduct. Sci. Technol. 5, 624 1992CrossRefGoogle Scholar
41Lumpp, J.K., Balchandran, U., Dusek, J.T., Goretta, K.C.Lanagan, M.T.: Mechanical properties of CuO. High Temp. Mater. Processes 9(1), 1 1990CrossRefGoogle Scholar
42Develos-Bagarinao, K., Yamasaki, H., Nakagawa, Y.Endo, K.: Pore formation in YBCO films deposited by a large-area pulsed laser deposition system. Supercond. Sci. Technol. 17, 1253 2004CrossRefGoogle Scholar
43Williford, R.E., Addleman, R.S., Li, X.S., Zemanian, T.S., Birnbaum, J.C.Fryxell, G.E.: Pore shape evolution in mesoporous silica thin films: From circular to elliptical to rectangular. J. Non-Cryst. Solids 351, 2217 2005CrossRefGoogle Scholar
44Suh, Y.-S., Park, D.-G.Jang, S.-A.: Investigation of stress behaviors and mechanism of void formation in sputtered TiSix films. Thin Solid Films 450, 341 2004CrossRefGoogle Scholar
45Hauffe, K.: Oxidation of Metals Plenum Press New York 1965 159Google Scholar
46O’Reilly, M., Jiang, X., Beechinor, J.T., Lynch, S., Nidheasuna, C.N., Patterson, J.C.Crean, G.M.: Investigation of oxidation behavior of thin film and bulk copper. Appl. Surf. Sci. 91, 152 1995CrossRefGoogle Scholar
47Zhu, Y., Mimura, K.Isshiki, M.: Influence of oxide grain morphology on formation of the CuO scale during oxidation of copper at 600–1000 °C. Corros. Sci. 47, 534 2005Google Scholar
48Perinet, F., Barbezat, S.Philibert, J.: Mechanism of oxygen self diffusion in Cu2O. Mater. Sci. Monogr. 10, 234 1982Google Scholar
49Rebane, J.A., Yakovlev, N.V., Chicherin, D.S., Tretyakov, Y.D., Leonyuk, L.I.Yakunin, V.G.: An experimental study of copper self diffusion in CuO, Y2Cu2O5, and YBa2Cu3O7−x by secondary neutral mass spectroscopy. J. Mater. Chem. 7(10), 2085 1997CrossRefGoogle Scholar
50Oishi, Y.Kingery, W.D.: Self diffusion of oxygen in single crystal and polycrystalline Al2O3. J. Chem. Phys. 33(3), 480 1960CrossRefGoogle Scholar
51Kaur, I.Gust, W.: Handbook of Grain and Interphase Boundary Diffusion Data Ziegler Press Stuttgart 1989Google Scholar