Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T14:25:43.608Z Has data issue: false hasContentIssue false

Selective electrodeposition of Ni into the intertubular voids of anodic TiO2 nanotubes for improved photocatalytic properties

Published online by Cambridge University Press:  05 December 2012

Fengxia Liang
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
Jie Zhang
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
Lingxia Zheng
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
Chun-Kwan Tsang
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
Hui Li
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong; Department of Physics, University of Science and Technology of China, Hefei, Anhui230026, China; and USTC-CityU Joint Advanced Research Centre, Suzhou, Jiangsu215123, China
Shiwei Shu
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
Hua Cheng
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
Yang Yang Li*
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong; and USTC-CityU Joint Advanced Research Centre, Suzhou, Jiangsu215123, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report on Ni-modified TiO2 nanotubes with improved photocatalytic properties. Using the as-anodized TiO2 nanotubes as templates, Ni was electrodeposited using pulsed current waveforms. It was found that the Ni deposition was first initiated at the bottoms of the intertubular voids and then grew upward, resulting in a Ni/TiO2 coaxial nanostructure with Ni wrapping around the TiO2 nanotubes. Moreover, the tube inside was kept empty and tube openings unclogged for the fabricated Ni/TiO2 nanocomposites. Further photodegradation tests using methyl red revealed that the fabricated Ni/TiO2 nanocomposites possess higher photocatalytic efficiency than the counterparts of pristine TiO2 nanotubes. The observed improved photocatalytic efficiency is ascribed to the Schottky barriers formed between Ni and TiO2.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, D., Roy, P., Lee, K., and Schmuki, P.: Dye-sensitized solar cells using anodic TiO2 mesosponge: Improved efficiency by TiCl4 treatment. Electrochem. Commun. 12, 574 (2010).Google Scholar
Lin, C.J., Yu, W.Y., and Chien, S.H.: Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20, 1073 (2010).Google Scholar
Sauvage, F., Di Fonzo, F., Bassi, A.L., Casari, C.S., Russo, V., Divitini, G., Ducati, C., Bottani, C.E., Comte, P., and Graetzel, M.: Hierarchical TiO2 photoanode for dye-sensitized solar cells. Nano Lett. 10, 2562 (2010).Google Scholar
Wang, D.A., Hu, T.C., Hu, L.T., Yu, B., Xia, Y.Q., Zhou, F., and Liu, W.M.: Microstructured arrays of TiO2 Nanotubes for improved photo-electrocatalysis and mechanical stability. Adv. Funct. Mater. 19, 1930 (2009).CrossRefGoogle Scholar
Hamedani, H.A., Allam, N.K., Garmestani, H., and El-Sayed, M.A.: Electrochemical fabrication of strontium-doped TiO2 nanotube array electrodes and investigation of their photoelectrochemical properties. J. Phys. Chem. C 115, 13480 (2011).CrossRefGoogle Scholar
Wang, G.M., Wang, H.Y., Ling, Y.C., Tang, Y.C., Yang, X.Y., Fitzmorris, R.C., Wang, C.C., Zhang, J.Z., and Li, Y.: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026 (2011).Google Scholar
Ortiz, G.F., Hanzu, I., Djenizian, T., Lavela, P., Tirado, J.L., and Knauth, P.: Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem. Mater. 21, 63 (2009).Google Scholar
Salari, M., Aboutalebi, S.H., Konstantinov, K., and Liu, H.K.: A highly ordered titania nanotube array as a supercapacitor electrode. Phys. Chem. Chem. Phys. 13, 5038 (2011).CrossRefGoogle ScholarPubMed
Ghicov, A., Alba, S.P., Macak, J.M., and Schmuki, P.: High-contrast electrochromic switching using transparent lift-off layers of self-organized TiO2 nanotubes. Small 4, 1063 (2008).Google Scholar
Ghicov, A., Tsuchiya, H., Hahn, R., Macak, J.M., Munoz, A.G., and Schmuki, P.: TiO2 nanotubes: H+ insertion and strong electrochromic effects. Electrochem. Commun. 8, 528 (2006).Google Scholar
Hahn, R., Ghicov, A., Tsuchiya, H., Macak, J.M., Munoz, A.G., and Schmuki, P.: Lithium-ion insertion in anodic TiO2 nanotubes resulting in high electrochromic contrast. Phys. Status Solidi A 204, 1281 (2007).Google Scholar
Xie, Y., Zhou, L., Huang, C., Huang, H., and Lu, J.: Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application. Electrochim. Acta 53, 3643 (2008).CrossRefGoogle Scholar
Banerjee, S., Mohapatra, S.K., Das, P.P., and Misra, M.: Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem. Mater. 20, 6784 (2008).Google Scholar
Zhang, J., Bang, J.H., Tang, C.C., and Kamat, P.V.: Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4, 387 (2010).Google Scholar
Kontos, A.I., Likodimos, V., Stergiopoulos, T., Tsoukleris, D.S., Falaras, P., Rabias, I., Papavassiliou, G., Kim, D., Kunze, J., and Schmuki, P.: Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles. Chem. Mater. 21, 662 (2009).Google Scholar
Hesabi, Z.R., Allam, N.K., Dahmen, K., Garmestani, H., and El-Sayed, M.A.: Self-standing crystalline TiO2 nanotubes/CNTs heterojunction membrane: Synthesis and characterization. ACS Appl. Mater. Interfaces 3, 952 (2011).Google Scholar
Macak, J.M., Gong, B.G., Hueppe, M., and Schmuki, P.: Filling of TiO2 nanotubes by self-doping and electrodeposition. Adv. Mater. 19, 3027 (2007).Google Scholar
Seabold, J.A., Shankar, K., Wilke, R.H.T., Paulose, M., Varghese, O.K., Grimes, C.A., and Choi, K.S.: Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem. Mater. 20, 5266 (2008).CrossRefGoogle Scholar
Wang, D.A., Ye, Q.A., Yu, B., and Zhou, F.: Towards chemically bonded p-n heterojunctions through surface initiated electrodeposition of p-type conducting polymer inside TiO2 nanotubes. J. Mater. Chem. 20, 6910 (2010).Google Scholar
Macak, J.M., Zlamal, M., Krysa, J., and Schmuki, P.: Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3, 300 (2007).Google Scholar
Harvey, P.R., Rudham, R., and Ward, S.: Photocatalytic oxidation of liquid alcohols and binary alcohol mixtures by rutile. J. Chem. Soc., Faraday Trans. 79, 2975 (1983).Google Scholar
Ikeda, K., Sakai, H., Baba, R., Hashimoto, K., and Fujishima, A.: Photocatalytic reactions involving radical chain reactions using microelectrodes. J. Phys. Chem. B 101, 2617 (1997).CrossRefGoogle Scholar
Chen, X.B., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).CrossRefGoogle ScholarPubMed
Liu, G., Wang, L.Z., Yang, H.G., Cheng, H.M., and Lu, G.Q.: Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831 (2009).Google Scholar
Zhang, D.: Chemical synthesis of Ni/TiO2 nanophotocatalyst for UV/visible light assisted degradation of organic dye in aqueous solution. J. Sol-Gel Sci. Technol. 58, 312 (2011).Google Scholar
Tayade, R.J., Kulkarni, R.G., and Jasra, R.V.: Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind. Eng. Chem. Res. 45, 5231 (2006).Google Scholar
Chen, H., Chen, S., Quan, X., Yu, H.T., Zhao, H.M., and Zhang, Y.B.: Fabrication of TiO2-Pt coaxial nanotube array Schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution. J. Phys. Chem. C 112, 9285 (2008).CrossRefGoogle Scholar
Xie, K.P., Sun, L., Wang, C.L., Lai, Y.K., Wang, M.Y., Chen, H.B., and Lin, C.J.: Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim. Acta 55, 7211 (2010).Google Scholar
Paramasivam, I., Macak, J.M., and Schmuki, P.: Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles. Electrochem. Commun. 10, 71 (2008).CrossRefGoogle Scholar
Seery, M.K., George, R., Floris, P., and Pillai, S.C.: Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol., A 189, 258 (2007).Google Scholar
Sobana, N., Muruganadham, M., and Swaminathan, M.: Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes. J. Mol. Catal. A: Chem. 258, 124 (2006).Google Scholar
Sclafani, A. and Herrmann, J.M.: Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. J. Photochem. Photobiol., A 113, 181 (1998).CrossRefGoogle Scholar
Iliev, V., Tomova, D., Bilyarska, L., and Petrov, L.: Photooxidation of xylenol orange in the presence of palladium-modified TiO2 catalysts. Catal. Commun. 5, 759 (2004).Google Scholar
Moti, E., Shariat, M.H., and Bahrololoom, M.E.: Electrodeposition of nanocrystalline nickel by using rotating cylindrical electrodes. Mater. Chem. Phys. 111, 469 (2008).CrossRefGoogle Scholar
Wang, C.X., Yin, L.W., Zhang, L.Y., and Gao, R.: Ti/TiO2 nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. J. Phys. Chem. C 114, 4408 (2010).Google Scholar
Zhang, Y.H., Yang, Y.N., Xiao, P., Zhang, X.N., Lu, L., and Li, L.: Preparation of Ni nanoparticle-TiO2 nanotube composite by pulse electrodeposition. Mater. Lett. 63, 2429 (2009).CrossRefGoogle Scholar
Fang, H.T., Liu, M., Wang, D.W., Sun, T., Guan, D.S., Li, F., Zhou, J.G., Sham, T.K., and Cheng, H.M.: Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology 20, 225701 (2009).CrossRefGoogle ScholarPubMed
Chen, J., Ollis, D.F., Rulkens, W.H., and Bruning, H.: Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II): Photocatalytic mechanisms. Water Res. 33, 669 (1999).Google Scholar
Supplementary material: File

Liang Supplementary Material

Figures 1-2

Download Liang Supplementary Material(File)
File 1.8 MB