Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T13:27:31.805Z Has data issue: false hasContentIssue false

Secondary ion mass spectrometry study of Ti4+ diffusion properties in congruent Er:LiNbO3 codoped with moderate concentration of MgO

Published online by Cambridge University Press:  31 January 2011

De-Long Zhang*
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; Key Laboratory of Optoelectronics Information and Technical Science (Tianjin University), Ministry of Education, Tianjin, 300072, China; and Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, People’s Republic of China
Bei Chen
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Optoelectronics Information and Technical Science (Tianjin University), Ministry of Education, Tianjin, 300072, China
Yu-Heng Xu
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
Edwin Yue-Bun Pun
Affiliation:
Key Laboratory of Optoelectronics Information and Technical Science (Tianjin University), Ministry of Education, Tianjin, 300072, China
*
a) Address all correspondence to this author. e-mail:[email protected]
Get access

Abstract

At 1100 °C, the diffusion properties of Ti4+ into congruent LiNbO3 crystals codoped with 0.5 mol% Er2O3 and different MgO concentrations of 0.5, 1.0, and 1.5 mol% have been studied by secondary ion mass spectrometry (SIMS). Three Y-cut and three Z-cut plates with different Mg doping levels were coated with a 60-nm-thick Ti film at first and then annealed at 1100 °C for 28 h in a wet O2 atmosphere. SIMS was used to analyze depth profile characteristics of diffused Ti ions and the constituent elements of the substrate as well. The results show that the diffusion reservoir was exhausted and the Ti metal film was completely diffused. All measured Ti profiles follow a Gaussian function. No Mg out-diffusion accompanied the Ti in-diffusion procedure for all crystals studied. The 1/e diffusion depth is similar to 8.3/10.2, 7.4/8.7, and 6.6/8.2 ± 0.2/0.2 μm/μm for the Y/Z-cut crystal with the Mg doping level of 0.5, 1.0, and 1.5 mol%, respectively, yielding a Ti4+ diffusivity of 0.62/0.93, 0.49/0.67, and 0.39/0.60 ± 0.03/0.03 (μm2/h)/(μm2/h), respectively. The diffusion shows definite anisotropy and a considerable MgO doping level effect. Under the same Mg doping level, the diffusion in a Z-cut crystal is faster. The diffusivity decreases with the increase of the Mg doping level. This effect is qualitatively explained from the viewpoint of the Mg doping effect on concentration of the intrinsic defects in LiNbO3 crystal.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Brinkmann, R., Sohler, W., and Suche, H.: Continuous-wave erbium-diffused LiNbO3 waveguide laser. Electron. Lett. 27, 415 (1991).CrossRefGoogle Scholar
2.Becker, Ch., Oesselke, T., Pandavenes, J., Ricken, R., Rochhausen, K., Schreiberg, G., Sohler, W., Suche, H., Wessel, R., Balsamo, S., Montrosset, I., and Sciancalepore, D.: Advanced Ti: Er:LiNbO3 waveguide lasers. IEEE J. Sel. Top. Quantum Electron. 6, 101 (2000).CrossRefGoogle Scholar
3.Amin, J., Aust, J.A., and Sanford, N.A.: Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3. Appl. Phys. Lett. 69, 3785 (1996).CrossRefGoogle Scholar
4.Helmfrid, S., Arvidsson, G., Webjorn, J., Linnarsson, M., and Pihl, T.: Stimulated emission in Er:Ti:LiNbO3 waveguides close to 1.53 μm transition. Electron. Lett. 27, 913 (1991).CrossRefGoogle Scholar
5.Huang, C.H. and McCaughan, L.: 980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: A comparison with 1484-nm pumping. IEEE J. Sel. Top. Quantum Electron. 2, 367 (1996).CrossRefGoogle Scholar
6.Huang, C.H. and McCaughan, L.: Photorefractive-damage-resistant Er-indiffused MgO:LiNbO3 ZnO-waveguide amplifier and lasers. Electron. Lett. 33, 1639 (1997).CrossRefGoogle Scholar
7.Cantelar, E., Torchia, G.A., Sanz-Garcia, J.A., Pernas, P.L., Lifante, G., and Cusso, F.: Red, green, and blue simultaneous generation in a periodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides. Appl. Phys. Lett. 83, 2991 (2003).CrossRefGoogle Scholar
8.Das, B.K., Ricken, R., and Sohler, W.: Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide. Appl. Phys. Lett. 83, 1515 (2003).CrossRefGoogle Scholar
9.Das, B.K., Ricken, R., Quiring, V., Suche, H., and Sohler, W.: Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide. Opt. Lett. 29, 165 (2004).CrossRefGoogle ScholarPubMed
10.Schreiber, G., Hofmann, D., Grundkotter, W., Lee, Y.L., Suche, H., Quiring, V., Ricken, R., and Sohler, W.: Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides. Proc. SPIE 4277, 144 (2001).CrossRefGoogle Scholar
11.Zhong, G.G., Jin, J., and Wu, Z.K.: Measurements of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO. J. Opt. Soc. Am. 70, 631 (1980).Google Scholar
12.Bryan, D.A., Gerson, R., and Tomaschke, H.E.: Increased optical damage resistance in lithium niobate. Appl. Phys. Lett. 44, 847 (1984).CrossRefGoogle Scholar
13.Furukawa, Y., Kitamura, K., Takekawa, S., Miyamoto, A., Terao, M., and Suda, N.: Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations. Appl. Phys. Lett. 77, 2494 (2000).CrossRefGoogle Scholar
14. Á. Péter, K. Polgár, L. Kovács, and Lengyel, K.: Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals. J. Cryst. Growth 284, 149 (2005).Google Scholar
15.Bulmer, C.H.: Characterization of Ti-indiffused waveguides in MgO-doped LiNbO3. Electron. Lett. 20, 902 (1984).CrossRefGoogle Scholar
16. A. Sjöberg, Arvidsson, G., and Lipovskii, A.A.: Characterization of waveguides fabricated by titanium diffusion in magnesiumdoped lithium niobate. J. Opt. Soc. Am. B 5, 285 (1988).Google Scholar
17.Cantelar, E., Sanz-García, J.A., and Cussó, F.: Growth of LiNbO3 co-doped with Er3+/Yb3+. J. Cryst. Growth 205, 196 (1999).CrossRefGoogle Scholar
18.Jackel, J.L., Ramaswamy, V., and Lyman, S.P.: Elimination of outdiffused surface guiding in titanium-diffused LiNbO3. Appl. Phys. Lett. 38, 509 (1981).CrossRefGoogle Scholar
19.Hu, L.J., Chang, Y.H., Lin, I.N., and Yang, S.J.: Defects of lithium niobate crystals heavily doped with MgO. J. Cryst. Growth 114, 191 (1991).CrossRefGoogle Scholar
20.Crank, J.: The Mathematics of Diffusion, 2nd ed. (Clarendon Press, Oxford, UK, 1985), p. 11.Google Scholar
21.Noda, J. and Fukuma, M.: Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-a-fiber characteristics. Appl. Opt. 19, 591 (1980).Google Scholar
22.Fouchet, S., Carenco, A., Daguet, C., Guglielmi, R., and Riviere, L.: Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters. J. Lightwave Technol. 3, 700 (1987).CrossRefGoogle Scholar
23.Baumann, I., Brinkmann, R., Dinand, M., Sohler, W., Beckers, L., Buchal, Ch., Fleuster, M., Holzbrecher, H., Paulus, H., Muller, K.H., Gog, Th., Materlik, G., Witte, O., Stolz, H., and von der Osten, W.: Erbium incorporation in LiNbO3 by diffusion-doping. Appl. Phys. A 64, 33 (1997).CrossRefGoogle Scholar
24.Nevado, R., Cusso, F., Lifante, G., Caccavale, F., Sada, C., and Segato, F.: Correlation between compositional and refractive index profiles in LiNbO3:Zn diffused optical waveguides. J. Appl. Phys. 88, 6183 (2000).CrossRefGoogle Scholar
25.Holmes, R.J. and Smyth, D.M.: Titanium diffusion into LiNbO3 as a function of stoichiometry. J. Appl. Phys. 55, 3531 (1984).CrossRefGoogle Scholar
26.Noda, J., Fukuma, M., and Saito, S.: Effect of Mg diffusion on Tidiffused LiNbO3 waveguides. J. Appl. Phys. 49, 3150 (1978).CrossRefGoogle Scholar
27.Sugii, K., Fukuma, M., and Iwasaki, H.: A study of titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods. J. Mater. Sci. 13, 523 (1978).CrossRefGoogle Scholar
28.Lerner, P., Legras, C., and Dumas, J.P.: Stoichiometry of single-crystal of lithium metaniobate. J. Cryst. Growth 3–4, 231 (1968).CrossRefGoogle Scholar
29.Iyi, N., Kitamura, K., Izumi, F., Yamamoto, J.K., Hayashi, T., Asano, H., and Kimura, S.: Comparative study of defect structures in lithium niobate with different compositions. J. Solid State Chem. 101, 340 (1992).CrossRefGoogle Scholar
30.Wilkinson, A.P., Cheetham, A.K., and Jarman, R.H.: Defect structure of congrently melting lithium niobate. J. Appl. Phys. 74, 3080 (1993).CrossRefGoogle Scholar
31.Zotov, N., Boysen, H., Frey, F., Metzger, T., and Born, E.: Cation substitution models of congruent LiNbO3 investigated by x-ray and neutron powder diffraction. J. Phys. Chem. Solids 55, 145 (1994).CrossRefGoogle Scholar
32.Watanabe, Y., Sota, T., Suzuki, K., Iyi, N., Kitamura, K., and Kimura, S.: Defect structures in LiNbO3. J. Phys. Condens. Matter 7, 3627 (1995).CrossRefGoogle Scholar
33.Iyi, N., Kitamura, K., Yajima, Y., and Kimura, S.: Defect structure model of MgO-doped LiNbO3. J. Solid State Chem. 118, 148 (1995).CrossRefGoogle Scholar
34.Conradi, D., Merschjann, C., Schoke, B., Imlau, M., Corradi, G., and Polgár, K.: Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3. Phys. Status Solidi 2, 284 (2008).Google Scholar
35.Maxein, D., Kratz, S., Reckenthaeler, P., Bükers, J., Haertle, D., Woike, T., and Buse, K.: Polarons in magnesium-doped lithium niobate crystals induced by femtosecond light pulses. Appl. Phys. B 92, 543 (2008).CrossRefGoogle Scholar
36.Harhira, A., Guilbert, L., Bourson, P., and Rinnert, H.: Polaron luminescence in iron-doped lithium niobate. Appl. Phys. B 92, 555 (2008).CrossRefGoogle Scholar
37.Kovacs, L., Rebouta, L., Soares, J.C., and Silva, M.F.da: Lattice site of Er in LiNbO3:Mg, Er crystals. Radiat. Eff. Defects Solids 119, 445 (1991).CrossRefGoogle Scholar
38.Kovacs, L., Rebouta, L., Soares, J.C., Silva, M.F.da, Hage-Ali, M., Stoquert, J.P., Siffert, P., Sanz-Garcia, J.A., Corradi, G., Szaller, Zs., and Polgar, K.: On the lattice site of trivalent dopants and the structure of Mg2+–OH°–M3+ defects in LiNbO3:Mg crystals. J. Phys. Condens. Matter 5, 781 (1993).CrossRefGoogle Scholar
39.Armenise, M.N., Canali, C., De Sario, M., Carnera, A., Mazzoldi, P., and Celloti, G.: Characterization of (Ti0.65Nb0.35)O2 compound as a source for Ti-diffusion during Ti:LiNbO3 optical waveguides fabrication. J. Appl. Phys. 54, 62 (1983).CrossRefGoogle Scholar
40.Rice, C.E. and Holmes, R.J.: A new rutile structure solid-solution phase in the LiNb3O8–TiO2 system, and its role in Ti diffusion into LiNbO3. J. Appl. Phys. 60, 3836 (1986).CrossRefGoogle Scholar
41.Silva, H.F. da, Filho, J.M., Zilio, S.C., and Nunes, F.D.: Modeling Ti in-diffusion in LiNbO3. J. Phys. Condens. Matter 9, 357 (1997).Google Scholar
42.Zolotoyabko, E., Avrahami, Y., Sauer, W., Metzger, T.H., and Peisl, J.: High-temperature phase transformation in Ti-diffused waveguide layers of LiNbO3. Appl. Phys. Lett. 73, 1352 (1998).CrossRefGoogle Scholar
43.Haruna, M., Sewai, H., Nishihara, H., Ikunishi, S., Gozen, T., and Tanaka, H.: Efficient laser oscillation in thermally Nd-diffused MgO:LiNbO3, single-mode waveguides. Electron. Lett. 30, 412 (1994).CrossRefGoogle Scholar
44.Zhang, D.L., Hua, P.R., and Pun, E.Y.B.: Er3+ diffusion in congruent LiNbO3 crystal doped with 4.5 mol% MgO. J. Appl. Phys. 103, 113513 (2007).CrossRefGoogle Scholar
45.Caccavale, F., Chakraborty, P., Capobianco, A., Gianello, G., and Mansour, I.: Characterization and optimization of Ti-diffused LiNbO3 optical waveguides by second diffusion of magnesium. J. Appl. Phys. 78, 187 (1995).CrossRefGoogle Scholar