Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:51:39.349Z Has data issue: false hasContentIssue false

Screen Printed La2/3Sr1/3MnO3 Thick Films on Alumina Substrates

Published online by Cambridge University Press:  31 January 2011

L. Durand
Affiliation:
Institut de Ciència de Materials de Barcelona (CSIC), Campus Universitat Aut‘onoma de Barcelona, E-08193 Bellaterra, Catalunya, Spain
Ll. Balcells
Affiliation:
Institut de Ciència de Materials de Barcelona (CSIC), Campus Universitat Aut‘onoma de Barcelona, E-08193 Bellaterra, Catalunya, Spain
A. Calleja
Affiliation:
Institut de Ciència de Materials de Barcelona (CSIC), Campus Universitat Aut‘onoma de Barcelona, E-08193 Bellaterra, Catalunya, Spain
J. Fontcuberta
Affiliation:
Institut de Ciència de Materials de Barcelona (CSIC), Campus Universitat Aut‘onoma de Barcelona, E-08193 Bellaterra, Catalunya, Spain
X. Obradors
Affiliation:
Institut de Ciència de Materials de Barcelona (CSIC), Campus Universitat Aut‘onoma de Barcelona, E-08193 Bellaterra, Catalunya, Spain
Get access

Abstract

We report here on the preparation of La2/3Sr1/3MnO3 magnetoresistive thick films on polycrystalline Al2O3 substates by using the screen printing technique. It is shown that films can be obtained using high temperature sintering. While there is a reacted layer, this improves adhesion and is not too troublesome if the films are made thick enough. It is shown that PbO–B2O3 –SiO2 glass additives allow sintering at lower temperatures and can be used to improve the mechanical stress of the films. However, it is found that glass concentrations large enough to significantly improve the film adherence result in a weak low field magnetoresistance probably because grains are coated with high resistivity material. Strategies to overcome these difficulties are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., and Chen, L. H., Science 264, 2331 (1994).Google Scholar
2.Hwang, H. Y., Cheong, S-W., Ong, N. P., and Batlogg, B., Phys. Rev. Lett. 77, 2041 (1996).CrossRefGoogle Scholar
3.Gupta, A.et al., Phys. Rev. B 54, R 15 629 (1996).CrossRefGoogle Scholar
4.Fontcuberta, J., Martínez, B., Laukhin, V., Balcells, Ll., Obradors, X., Cohenca, C. H., and Jardim, R. F., Phil. Trans. R. Soc. London A 356 (1998).CrossRefGoogle Scholar
5.Mathur, N. D., Burnell, G., Isaac, S. P., Jackson, T. J., Teo, B-S., MacManns-Driscoll, J. L., Cohen, L. F., Evetts, J. E., and Blamire, M. G., Nature (London) 387, 266 (1997).CrossRefGoogle Scholar
6.Balcells, L. L., Enrich, R., Fontcuberta, J., and Obradors, X., Appl. Phys. Lett. 69, 1486 (1996).CrossRefGoogle Scholar
7.Ceramic Materials for Electronics, edited by Buchanan, R. C. (Marcel Dekker Inc., New York, 1991), Chap. 8.Google Scholar
8.Thick Film Sensors, edited by Prudenziati, M. (Elsevier, New York, 1994), Sec. II.Google Scholar
9.Turilli, G. and Licci, F., Phys. Rev. B 54, 13 052 (1996).CrossRefGoogle Scholar
10.Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y., Phys. Rev. B 51, 14 103 (1995).CrossRefGoogle Scholar