Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T03:23:24.721Z Has data issue: false hasContentIssue false

Rheological properties of HDPE/chitosan composites modified with PE-g-MA

Published online by Cambridge University Press:  30 January 2017

Poliana S. Lima
Affiliation:
Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil
Rebecca S.F. Brito
Affiliation:
Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil
Bárbara F.F. Santos
Affiliation:
Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil
Albaniza A. Tavares
Affiliation:
Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil
Pankaj Agrawal
Affiliation:
Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil
Daniela L.A.C.S. Andrade
Affiliation:
Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil
Renate M.R. Wellen
Affiliation:
Department of Materials Engineering, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
Eduardo L. Canedo
Affiliation:
Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil
Suédina M.L. Silva*
Affiliation:
Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB 58429-900, Brazil
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The rheological behavior of composites made with high-density polyethylene (HDPE) and chitosan was studied. Composites were prepared by melt processing in a laboratory internal mixer. Maleic anhydride grafted HDPE (PE-g-MA) was used as compatibilizer to enhance the dispersion of chitosan in the HDPE matrix. Different percentages of chitosan and compatibilizer (up to a maximum of 25 phr) were added into HDPE to prepare composites. Characterization of the composites with parallel plate rheometer and laboratory internal mixer revealed that the presence of chitosan increases the complex viscosity, loss modulus, storage modulus and the torque (i.e., melt viscosity), and the combination chitosan/compatibilizer has a similar, if slighter, effect. At higher filler levels it is clear that the PE-g-MA affected the microstructure of the compounds, possibly increasing matrix–filler interactions and acting as an effective compatibilizer.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Sarah Morgan

References

REFERENCES

Peacock, A.: Handbook of Polyethylene: Structures: Properties, and Applications (CRC Press, New York, 2000).CrossRefGoogle Scholar
Vasile, C. and Pascu, M.: Practical Guide to Polyethylene (Rapra Technology Limited, Shawbury, 2005).Google Scholar
Malpass, D.B.: Introduction to Industrial Polyethylene: Properties, Catalysts, and Processes (John Wiley & Sons, Hoboken, 2010).Google Scholar
Bonhomme, S., Cuer, A., Delort, A., Lemaire, J., Sancelme, M., and Scott, G.: Environmental biodegradation of polyethylene. Polym. Degrad. Stab. 81(3), 441 (2003).CrossRefGoogle Scholar
Scott, G.: Polymers and the Environment (Royal Society of Chemistry, Cambridge, 1999).CrossRefGoogle Scholar
Swift, G. and Wiles, D.: Biodegradable and degradable polymers and plastics in landfill sites. In Encyclopedia of Polymer Science and Technology, Kroschwitz, J.I., ed. (John Wiley & Sons., Hoboken, 2004).Google Scholar
Sudhakar, M., Doble, M., Murthy, P.S., and Venkatesan, R.: Marine microbe-mediated biodegradation of low-and high-density polyethylenes. Int. Biodeterior. Biodegrad. 61(3), 203 (2008).CrossRefGoogle Scholar
Ojeda, T., Freitas, A., Birck, K., Dalmolin, E., Jacques, R., Bento, F., and Camargo, F.: Degradability of linear polyolefins under natural weathering. Polym. Degrad. Stab. 96(4), 703 (2011).Google Scholar
Gross, R.A. and Kalra, B.: Biodegradable polymers for the environment. Science 297(5582), 803 (2002).Google Scholar
Kissin, Y.V.: Polyethylene: End-use Properties and Their Physical Meaning (Carl Hanser Verlag GmbH Co KG, Cincinnati, 2012).Google Scholar
Tolinski, M.: Additives for Polyolefins: Getting the Most Out of Polypropylene, Polyethylene and TPO (William Andrew, Oxford, 2015).Google Scholar
Husseinsyah, S., Azmin, A.N., and Ismail, H.: Effect of maleic anhydride-grafted-polyethylene (MAPE) and silane on properties of recycled polyethylene/chitosan biocomposites. Polym.-Plast. Technol. Eng. 52(2), 168 (2013).CrossRefGoogle Scholar
Orhan, Y., Hrenovic, J., and Buyukgungor, H.: Biodegradation of plastic compost bags under controlled soil conditions. Acta Chim. Slov. 51(3), 579 (2004).Google Scholar
Rogovina, S.Z., Aleksanyan, K.V., Novikov, D.D., Prut, E.V., and Rebrov, A.V.: Synthesis and investigation of polyethylene blends with natural polysaccharides and their derivatives. Polym. Sci., Ser. A 51(5), 554 (2009).Google Scholar
Rogovina, S.Z., Alexanyan, C.V., and Prut, E.V.: Biodegradable blends based on chitin and chitosan: Production, structure, and properties. J. Appl. Polym. Sci. 121(3), 1850 (2011).CrossRefGoogle Scholar
Ismail, H., Shaari, S.M., and Othman, N.: The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds. Polym. Test. 30(7), 784 (2011).Google Scholar
Correlo, V., Boesel, L., Bhattacharya, M., Mano, J., Neves, N., and Reis, R.: Properties of melt processed chitosan and aliphatic polyester blends. Mater. Sci. Eng., A 403(1), 57 (2005).CrossRefGoogle Scholar
Ermolovich, O. and Makarevich, A.: Effect of compatibilizer additives on the technological and performance characteristics of biodegradable materials based on starch-filled polyethylene. Russ. J. Appl. Chem. 79(9), 1526 (2006).Google Scholar
Raghavan, D. and Emekalam, A.: Characterization of starch/polyethylene and starch/polyethylene/poly (lactic acid) composites. Polym. Degrad. Stab. 72(3), 509 (2001).CrossRefGoogle Scholar
Wu, C-S.: A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan. Polymer 46(1), 147 (2005).CrossRefGoogle Scholar
Husseinsyah, S., Amri, F., Husin, K., and Ismail, H.: Mechanical and thermal properties of chitosan-filled polypropylene composites: The effect of acrylic acid. J. Vinyl Addit. Technol. 17(2), 125 (2011).CrossRefGoogle Scholar
Salmah, H., Faisal, A., and Kamarudin, H.: Chemical modification of chitosan-filled polypropylene (PP) composites: The effect of 3-aminopropyltriethoxysilane on mechanical and thermal properties. Int. J. Polym. Mater. 60(7), 429 (2011).CrossRefGoogle Scholar
Salmah, H., Amri, F., and Kamarudin, H.: Properties of chitosan-filled polypropylene (PP) composites: The effect of acetic acid. Polym.-Plast. Technol. Eng. 51(1), 86 (2012).Google Scholar
Amri, F., Husseinsyah, S., and Hussin, K.: Mechanical, morphological and thermal properties of chitosan filled polypropylene composites: The effect of binary modifying agents. Composites, Part A 46, 89 (2013).Google Scholar
Agboh, O. and Qin, Y.: Chitin and chitosan fibers. Polym. Adv. Technol. 8(6), 355 (1997).Google Scholar
Chang, K., Lin, Y-S., and Chen, R.: The effect of chitosan on the gel properties of tofu (soybean curd). J. Food Eng. 57(4), 315 (2003).Google Scholar
Dutta, P., Tripathi, S., Mehrotra, G., and Dutta, J.: Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 114(4), 1173 (2009).Google Scholar
Krajewska, B.: Application of chitin-and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb. Technol. 35(2), 126 (2004).Google Scholar
Peter, M.G.: Applications and environmental aspects of chitin and chitosan. J. Macromol. Sci., Part A: Pure Appl. Chem. 32(4), 629 (1995).CrossRefGoogle Scholar
Pillai, C., Paul, W., and Sharma, C.P.: Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 34(7), 641 (2009).Google Scholar
Prashanth, K.H. and Tharanathan, R.: Chitin/chitosan: Modifications and their unlimited application potential—An overview. Trends Food Sci. Technol. 18(3), 117 (2007).Google Scholar
Rabea, E.I., Badawy, M.E.-T., Stevens, C.V., Smagghe, G., and Steurbaut, W.: Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 4(6), 1457 (2003).Google Scholar
Agnihotri, S.A., Mallikarjuna, N.N., and Aminabhavi, T.M.: Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J. Controlled Release 100(1), 5 (2004).Google Scholar
Suh, J-K.F. and Matthew, H.W.: Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials 21(24), 2589 (2000).Google Scholar
Reesha, K.V., Panda, S.K., Bindu, J., and Varghese, T.O.: Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage. Int. J. Biol. Macromol. 79, 934 (2015).Google Scholar
Khoramnejadian, S.: Kinetic study of biodegradation of linear low density polyethylene/chitosan. Adv. Environ. Biol., 5(10), 3050 (2011).Google Scholar
Martínez-Camacho, A., Cortez-Rocha, M., Graciano-Verdugo, A., Rodríguez-Félix, F., Castillo-Ortega, M., Burgos-Hernández, A., Ezquerra-Brauer, J., and Plascencia-Jatomea, M.: Extruded films of blended chitosan, low density polyethylene and ethylene acrylic acid. Carbohydr. Polym. 91(2), 666 (2013).CrossRefGoogle ScholarPubMed
Mir, S., Yasin, T., Halley, P.J., Siddiqi, H.M., and Nicholson, T.: Thermal, rheological, mechanical and morphological behavior of HDPE/chitosan blend. Carbohydr. Polym. 83(2), 414 (2011).CrossRefGoogle Scholar
Ogah, A.O., Afiukwa, J.N., and Nduji, A.A.: Characterization and comparison of rheological properties of agro fiber filled high-density polyethylene bio-composites. Open J. Polym. Chem. 04(01), 12 (2014).CrossRefGoogle Scholar
Park, S.I., Marsh, K.S., and Dawson, P.: Application of chitosan-incorporated LDPE film to sliced fresh red meats for shelf life extension. Meat Sci. 85(3), 493 (2010).Google Scholar
Quiroz-Castillo, J., Rodríguez-Félix, D., Grijalva-Monteverde, H., del Castillo-Castro, T., Plascencia-Jatomea, M., Rodríguez-Félix, F., and Herrera-Franco, P.: Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride. Carbohydr. Polym. 101, 1094 (2014).Google Scholar
Rodríguez-Félix, D.E., Quiroz-Castillo, J.M., Grijalva-Monteverde, H., Castillo-Castro, T., Burruel-Ibarra, S.E., Rodríguez-Félix, F., Madera-Santana, T., Cabanillas, R.E., and Herrera-Franco, P.J.: Degradability of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride under natural weathering. J. Appl. Polym. Sci. 131(22), 41045 (2014).CrossRefGoogle Scholar
Salmah, H. and Azieyanti, A.N.: Properties of recycled polyethylene/chitosan composites: The effect of polyethylene-graft-maleic anhydride. J. Reinf. Plast. Compos. 30(3), 195 (2010).Google Scholar
Sunilkumar, M., Francis, T., Thachil, E.T., and Sujith, A.: Low density polyethylene–chitosan composites: A study based on biodegradation. Chem. Eng. J. 204–206, 114 (2012).Google Scholar
Sunilkumar, M., Gafoor, A.A., Anas, A., Haseena, A.P., and Sujith, A.: Dielectric properties: A gateway to antibacterial assay—A case study of low-density polyethylene/chitosan composite films. Polym. J. 46(7), 422 (2014).CrossRefGoogle Scholar
Vasile, C., Darie, R., Sdrobiş, A., Paslaru, E., Pricope, G., Baklavaridis, A., Munteanu, S., and Zuburtikudis, I.: Effectiveness of chitosan as antimicrobial agent in LDPE/CS composite films as minced poultry meat packaging materials. Cellul. Chem. Technol. 48(3–4), 325 (2014).Google Scholar
Vasile, C., Darie, R.N., Cheaburu-Yilmaz, C.N., Pricope, G-M., Bračič, M., Pamfil, D., Hitruc, G.E., and Duraccio, D.: Low density polyethylene–chitosan composites. Composites, Part B 55, 314 (2013).CrossRefGoogle Scholar
Wang, H-s., Chen, D., and Chuai, C-z.: Mechanical and barrier properties of LLDPE/chitosan blown films for packaging. Packag. Technol. Sci. 28(10), 915 (2015).Google Scholar
Zhang, H.Z., He, Z.C., Liu, G.H., and Qiao, Y.Z.: Properties of different chitosan/low-density polyethylene antibacterial plastics. J. Appl. Polym. Sci. 113(3), 2018 (2009).CrossRefGoogle Scholar
Lima, P.S., Guedes, C.F., Andrade, D.L.A.C.S., Canedo, E.L., and Silva, S.M.L.: High density polyethylene/chitosan compounds: Effect of load level on thermal and mechanical properties. In 2nd Brazilian Conference on Composite Materials—BCCM2 (São José dos Campos, 2014).Google Scholar
Braskem: High Density Polyethylene JV-060U Technical Data Sheet, Revision 8 (São Paulo, 2015). Google Scholar
Walsh, D. and Zoller, P.: Standard Pressure Volume Temperature Data for Polymers (CRC Press, Lancaster, 1995).Google Scholar
Yui, T., Imada, K., Okuyama, K., Obata, Y., Suzuki, K., and Ogawa, K.: Molecular and crystal structure of the anhydrous form of chitosan. Macromolecules 27(26), 7601 (1994).Google Scholar
Li, J., Revol, J., Naranjo, E., and Marchessault, R.: Effect of electrostatic interaction on phase separation behaviour of chitin crystallite suspensions. Int. J. Biol. Macromol. 18(3), 177 (1996).Google Scholar
Santos, C.P.F. and Dantas, S.L.A.: Avaliação de uma amostra de quitosana comercial para uso no tratamento de efluentes têxteis. Presented at the 48th Brazilian Chemistry Meeting (Rio de Janeiro, 2008).Google Scholar
Addivant: Polybond 3009 Technical Information [www.addivant.com] (Danbury, 2013).Google Scholar
Moussout, H., Ahlafi, H., Aazza, M., and Bourakhouadar, M.: Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym. Degrad. Stab. 130, 1 (2016).Google Scholar
Cox, W. and Merz, E.: Correlation of dynamic and steady-flow viscosities. J. Polym. Sci., Part A-2: Polym. Phys. 28, 619 (1958).Google Scholar
Dealy, J.M. and Larson, R.G.: Structure and Rheology of Molten Polymers (Hanser Publishers, Munich, 2006).Google Scholar
Winter, H.H.: Three views of viscoelasticity for Cox–Merz materials. Rheol. Acta 48(3), 241 (2009).Google Scholar
Gleissle, W. and Hochstein, B.: Validity of the Cox–Merz rule for concentrated suspensions. J. Rheol. 47(4), 897 (2003).Google Scholar
Cross, M.M.: Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. J. Colloid Sci. 20(5), 417 (1965).Google Scholar
Carreau, P.J., De Kee, D., and Chhabra, R.P.: Rheology of Polymeric Systems: Principles and Applications (Hanser Publishers, Munich, 1997).Google Scholar
Bird, R.B., Armstrong, R.C., and Hassager, O.: Dynamics of polymeric liquids. In Fluid Mechanics, Vol. 1, 2nd ed. (John Wiley & Sons, New York, 1987).Google Scholar
Laun, H.M.: Prediction of elastic strains of polymer melts in shear and elongation. J. Rheol. 30(3), 459 (1986).CrossRefGoogle Scholar
Sharma, V. and McKinley, G.H.: An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts. Rheol. Acta 51(6), 487 (2012).Google Scholar
Alves, T.S., Neto, J.E.S., Silva, S.M.L., Carvalho, L.H., and Canedo, E.L.: Process simulation of laboratory internal mixers. Polym. Test. 50, 94 (2016).Google Scholar
Canedo, E.L. and Valsamis, L.N.: Continuous Mixers, in Mixing and Compounding of Polymers, 2nd ed., Manas-Zloczower, I., ed. (Hanser Publishers, Munich, 2009); p. 1081.Google Scholar
Wetzel, M.D. and Shih, C.K.: Experimental simulation with a simple mixer and real material. In Mixing and Compounding of Polymers, Manas-Zloczower, I., ed. (Hanser Publishers, Munich, 2009); p. 479.Google Scholar
Costa, A.R.M., Almeida, T.G., Silva, S.M.L., Carvalho, L.H., and Canedo, E.L.: Chain extension in poly (butylene-adipate-terephthalate). Inline testing in a laboratory internal mixer. Polym. Test. 42, 115 (2015).Google Scholar
Tavares, A.A., Silva, D.F., Lima, P.S., Andrade, D.L., Silva, S.M., and Canedo, E.L.: Chain extension of virgin and recycled polyethylene terephthalate. Polym. Test. 50, 26 (2016).Google Scholar
Aranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N., Galed, G., and Heras, Á.: Functional characterization of chitin and chitosan. Curr. Chem. Biol. 3(2), 203 (2009).Google Scholar
Hristov, V. and Vlachopoulos, J.: Effects of polymer molecular weight and filler particle size on flow behavior of wood polymer composites. Polym. Compos. 29(8), 831 (2008).Google Scholar
Barnes, H.A., Hutton, J.F., and Walters, K.: An Introduction to Rheology (Elsevier, Amsterdam, 1989).Google Scholar
Shenoy, A.V.: Rheology of Filled Polymer Systems (Springer Science & Business Media, Dordrecht, 1999).Google Scholar
Krieger, I.M. and Dougherty, T.J.: A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3(1), 137 (1959).Google Scholar