Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T02:29:16.075Z Has data issue: false hasContentIssue false

Reverse martensitic phase transformation induced in Nb–Co multilayers by ion irradiation

Published online by Cambridge University Press:  03 March 2011

B.X. Liu
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Z.J. Zhang
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Get access

Abstract

A reverse martensitic phase transformation was observed in Nb-enriched Nb-Co multilayers induced by room temperature 200 ke V xenon ion mixing. Further experiments revealed that this bcc-fcc transition proceeds in two steps, i.e., bcc-hcp and hcp-fcc. A crystallographic model is proposed to explain the two-step transition through shearing and sliding, which are mediated by irradiation-induced defects and strain in the films. In addition, the existence of the hcp and fcc metastable states in the Nb-Co system was confirmed by high-temperature solid state interdiffusion of the corresponding multilayers.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Liu, B.X., Phys. Status Solidi A 94, 11 (1986).CrossRefGoogle Scholar
2.Was, G., Prog. Surf. Sci. 32, 211 (1989).CrossRefGoogle Scholar
3.Nastasi, M. and Mayer, J.W., Mater. Sci. Rep. 6, 1 (1991).CrossRefGoogle Scholar
4.Paine, B. and Averback, R., Nucl. Instrum. Methods in Phys. Res. B7/8, 666 (1985).CrossRefGoogle Scholar
5.Paine, B. and Liu, B.X., Ion Beam Assisted Film Growth, Chap. edited by Iolh, T. (Elsevier, Amsterdam, The Netherlands, 1989), p. 153.CrossRefGoogle Scholar
6.Liu, B.X., Johnson, W.L., Nicolet, M.A., and Lau, S.S., Appl. Phys. Lett. 42, 45 (1983).CrossRefGoogle Scholar
7.Liu, B.X., Johnson, W.L., Nicolet, M.A., and Lau, S.S., Nucl. Instrum. Methods 209/210, 229 (1983).CrossRefGoogle Scholar
8.Hung, L. S., Nastasi, M., Gyulai, J., and Mayer, J. W., Appl. Phys. Lett. 42, 672 (1983).CrossRefGoogle Scholar
9.Liu, B.X., Huang, L.J., Tao, K., Shang, C.H., and Li, H.D., Phys. Rev. Lett. 59, 745 (1987).CrossRefGoogle Scholar
10.Tsaur, B. Y., Lau, S. S., Hung, L. S., and Mayer, J. W., Nucl. Instrum. Methods 182/183, 67 (1981).CrossRefGoogle Scholar
11.Liu, B.X., Phys. Status Solidi A 75, k77 (1983).CrossRefGoogle Scholar
12.Kurdjumov, G. and Sachs, G., Z. Phys. 64, 325 (1930).CrossRefGoogle Scholar
13.Banerjee, S. and Krishnan, R., Acta Metall. 19, 1317 (1971).CrossRefGoogle Scholar
14.Bubring, H., Acta Metall. 7, 279 (1959).Google Scholar
15.Liu, B.X., Mater. Lett. 5, 322 (1987).Google Scholar
16.Gallego, J.L., Somozar, J. A., Alonso, J. A., and Lopez, L. M., J. Phys. F: Met. Phys. 18, 2149 (1988).CrossRefGoogle Scholar
17.Thompson, M.V., Defects and Radiation Damage in Metals, Chaps. 4 and 5 (Cambridge University Press, Cambridge, U.K., 1969).Google Scholar