Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T06:08:37.755Z Has data issue: false hasContentIssue false

Research progress of graphene-based microwave absorbing materials in the last decade

Published online by Cambridge University Press:  20 March 2017

Jun-Sheng Li*
Affiliation:
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, People’s Republic of China
Hui Huang
Affiliation:
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, People’s Republic of China
Yong-Jiang Zhou
Affiliation:
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, People’s Republic of China
Chao-Yang Zhang
Affiliation:
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, People’s Republic of China
Zhao-Ting Li
Affiliation:
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

With the rapid development of electronic information and technology, especially the explosive advance of novel electronic devices, ultra-wideband radar detector and satellite communication, the elimination of adverse electromagnetic waves (EWs) effectively is very necessary both for electronic safety and national defense security. As one of the important material basis for controlling adverse EW pollution, compatibility, shielding, and stealth capability of weaponry, microwave absorbing materials has long been an area of intense research activity. Graphene-based materials have attracted great interests for microwave absorption in recent years due to the unique structure and physicochemical properties of graphene, such as high specific surface area, ultrathin thickness, large interface, optical transmittance, and tunable conductive properties, etc. In this paper, the properties and absorption behavior of different kinds of microwave absorbing materials based on graphene were reviewed and discussed in detail. In addition, the perspective of the current challenges and key issues for achieving better microwave absorption performance of the graphene-based materials are provided.

Type
Review
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Mauricio Terrones

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Liu, Z., Bai, G., Huang, Y., Li, F., Ma, Y., Guo, T., He, X., Lin, X., Gao, H., and Chen, Y.: Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J. Phys. Chem. C 111(37), 13696 (2007).CrossRefGoogle Scholar
Liu, T., Pang, Y., Zhu, M., and Kobayashi, S.: Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 6(4), 2447 (2014).CrossRefGoogle ScholarPubMed
Wang, L., Huang, Y., Sun, X., Huang, H., Liu, P., Zong, M., and Wang, Y.: Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6(6), 3157 (2014).CrossRefGoogle ScholarPubMed
Yin, X., Kong, L., Zhang, L., Cheng, L., Travitzky, N., and Greil, P.: Electromagnetic properties of Si–C–N based ceramics and composites. Int. Mater. Rev. 59(6), 326 (2014).CrossRefGoogle Scholar
Yan, D.X., Pang, H., Li, B., Vajtai, R., Xu, L., Ren, P.G., Wang, J.H., and Li, Z.M.: Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559 (2015).CrossRefGoogle Scholar
Sun, D., Zou, Q., Wang, Y., Wang, Y., Jiang, W., and Li, F.: Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6(12), 6557 (2014).CrossRefGoogle ScholarPubMed
Zhang, X-J., Wang, G-S., Cao, W-Q., Wei, Y-Z., Liang, J-F., Guo, L., and Cao, M-S.: Enhanced microwave absorption property of reduced graphene oxide (RGO)–MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 6(10), 7471 (2014).CrossRefGoogle ScholarPubMed
Zhao, X., Zhang, Z., Wang, L., Xi, K., Cao, Q., Wang, D., Yang, Y., and Du, Y.: Excellent microwave absorption property of graphene-coated Fe nanocomposites. Sci. Rep. 3, 3421 (2013).CrossRefGoogle ScholarPubMed
Cao, M-S., Yang, J., Song, W-L., Zhang, D-Q., Wen, B., Jin, H-B., Hou, Z-L., and Yuan, J.: Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4(12), 6949 (2012).CrossRefGoogle ScholarPubMed
Yang, H-J., Cao, W-Q., Zhang, D-Q., Su, T-J., Shi, H-L., Wang, W-Z., Yuan, J., and Cao, M-S.: NiO hierarchical nanorings on SiC: Enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces 7(13), 7073 (2015).CrossRefGoogle ScholarPubMed
Lu, M-M., Cao, W-Q., Shi, H-L., Fang, X-Y., Yang, J., Hou, Z-L., Jin, H-B., Wang, W-Z., Yuan, J., and Cao, M-S.: Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2(27), 10540 (2014).CrossRefGoogle Scholar
Wang, X-X., Lu, M-M., Cao, W-Q., Wen, B., and Cao, M-S.: Fabrication, microstructure and microwave absorption of multi-walled carbon nanotube decorated with CdS nanocrystal. Mater. Lett. 125, 107 (2014).CrossRefGoogle Scholar
Wen, B., Wang, X., Cao, W., Shi, H., Lu, M., Wang, G., Jin, H., Wang, W., Yuan, J., and Cao, M.: Reduced graphene oxides: The thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 6(11), 5754 (2014).CrossRefGoogle ScholarPubMed
Liu, J., Cao, W-Q., Jin, H-B., Yuan, J., Zhang, D-Q., and Cao, M-S.: Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 3(18), 4670 (2015).CrossRefGoogle Scholar
Wen, B., Cao, M., Lu, M., Cao, W., Shi, H., Liu, J., Wang, X., Jin, H., Fang, X., and Wang, W.: Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484 (2014).CrossRefGoogle ScholarPubMed
Fan, Z., Luo, G., Zhang, Z., Zhou, L., and Wei, F.: Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater. Sci. Eng., B 132(1), 85 (2006).CrossRefGoogle Scholar
Oh, J-H., Oh, K-S., Kim, C-G., and Hong, C-S.: Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Composites, Part B 35(1), 49 (2004).CrossRefGoogle Scholar
Wang, C., Han, X., Xu, P., Zhang, X., Du, Y., Hu, S., Wang, J., and Wang, X.: The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98(7), 072906 (2011).CrossRefGoogle Scholar
Fan, Y., Yang, H., Li, M., and Zou, G.: Evaluation of the microwave absorption property of flake graphite. Mater. Chem. Phys. 115(2), 696 (2009).CrossRefGoogle Scholar
Cao, M-S., Song, W-L., Hou, Z-L., Wen, B., and Yuan, J.: The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788 (2010).CrossRefGoogle Scholar
Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., and Govindaraj, A.: Graphene: The new two-dimensional nanomaterial. Angew. Chem., Int. Ed. 48(42), 7752 (2009).CrossRefGoogle ScholarPubMed
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S.: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010).CrossRefGoogle ScholarPubMed
Fang, J., Zha, W., Kang, M., Lu, S., Cui, L., and Li, S.: Microwave absorption response of nickel/graphene nanocomposites prepared by electrodeposition. J. Mater. Sci. 48, 8060 (2013).CrossRefGoogle Scholar
Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., and Kim, K.S.: Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156 (2012).CrossRefGoogle ScholarPubMed
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558 (2007).CrossRefGoogle Scholar
Wang, G., Zhang, M., Liu, S., Xie, X., Ding, G., Wang, Y., Chu, P.K., Gao, H., Ren, W., Yuan, Q., Zhang, P., Wang, X., and Di, Z.: Synthesis of layer-tunable graphene: A combined kinetic implantation and thermal ejection approach. Adv. Funct. Mater. 25(24), 3666 (2015).CrossRefGoogle Scholar
Avouris, P., Chen, Z., and Perebeinos, V.: Carbon-based electronics. Nat. Nanotechnol. 2(10), 605 (2007).CrossRefGoogle ScholarPubMed
Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., and Chen, Y.: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463 (2008).CrossRefGoogle ScholarPubMed
Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., and Dai, H.: Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 3(9), 538 (2008).CrossRefGoogle ScholarPubMed
Yin, Z., Sun, S., Salim, T., Wu, S., Huang, X., He, Q., Lam, Y.M., and Zhang, H.: Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4(9), 5263 (2010).CrossRefGoogle ScholarPubMed
Park, S., An, J., Suk, J.W., and Ruoff, R.S.: Graphene-based actuators. Small 6(2), 210 (2010).CrossRefGoogle ScholarPubMed
He, Q., Sudibya, H.G., Yin, Z., Wu, S., Li, H., Boey, F., Huang, W., Chen, P., and Zhang, H.: Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano 4(6), 3201 (2010).CrossRefGoogle ScholarPubMed
Li, B., Cao, X., Ong, H.G., Cheah, J.W., Zhou, X., Yin, Z., Li, H., Wang, J., Boey, F., and Huang, W.: All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes. Adv. Mater. 22(28), 3058 (2010).CrossRefGoogle ScholarPubMed
Pumera, M.: Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39(11), 4146 (2010).CrossRefGoogle ScholarPubMed
Zhu, H., Ding, Y., Wang, A., Sun, X., Wu, X-C., and Zhu, J-J.: A simple strategy based on upconversion nanoparticles for a fluorescent resonant energy transfer biosensor. J. Mater. Chem. B 3, 458 (2015).CrossRefGoogle ScholarPubMed
Zhu, C., Yang, S., Wang, G., Mo, R., He, P., Sun, J., Di, Z., Yuan, N., Ding, J., and Ding, G.: Negative induction effect of graphite N on graphene quantum dots: Tunable band gap photoluminescence. J. Mater. Chem. C 3(34), 8810 (2015).CrossRefGoogle Scholar
Chen, Z., Xu, C., Ma, C., Ren, W., and Cheng, H.M.: Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296 (2013).CrossRefGoogle ScholarPubMed
Han, M., Yin, X., Kong, L., Li, M., Duan, W., Zhang, L., and Cheng, L.: Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2(39), 16403 (2014).CrossRefGoogle Scholar
Batrakov, K., Kuzhir, P., Maksimenko, S., Paddubskaya, A., Voronovich, S., Lambin, P., Kaplas, T., and Svirko, Y.: Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci. Rep. 4(7191), 1 (2014).CrossRefGoogle ScholarPubMed
Shen, B., Zhai, W., and Zheng, W.: Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542 (2014).CrossRefGoogle Scholar
Kong, L., Yin, X., Yuan, X., Zhang, Y., Liu, X., Cheng, L., and Zhang, L.: Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 73, 185 (2014).CrossRefGoogle Scholar
Bai, X., Zhai, Y., and Zhang, Y.: Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115(23), 11673 (2011).CrossRefGoogle Scholar
Ren, Y-L., Wu, H-Y., Lu, M-M., Chen, Y-J., Zhu, C-L., Gao, P., Cao, M-S., Li, C-Y., and Ouyang, Q-Y.: Quaternary nanocomposites consisting of graphene, Fe3O4@Fe core@shell, and ZnO nanoparticles: Synthesis and excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 4(12), 6436 (2012).CrossRefGoogle ScholarPubMed
Durmus, Z., Durmus, A., and Kavas, H.: Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. J. Mater. Sci. 50(3), 1201 (2014).CrossRefGoogle Scholar
Bhattacharya, P. and Das, C.K.: Investigation on microwave absorption capacity of nanocomposites based on metal oxides and graphene. J. Mater. Sci.: Mater. Electron. 24(6), 1927 (2012).Google Scholar
Balci, O., Polat, E.O., Kakenov, N., and Kocabas, C.: Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015).CrossRefGoogle ScholarPubMed
Wu, B., Tuncer, H.M., Naeem, M., Yang, B., Cole, M.T., Milne, W.I., and Hao, Y.: Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz. Sci. Rep. 4, 4130 (2014).CrossRefGoogle Scholar
Saini, P. and Arora, M.: Microwave absorption and EMI shielding behaviour of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. New Polymers for Special Applications 3, 71 (2012).Google Scholar
Huang, X., Hu, Z., and Liu, P.: Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction. AIP Adv. 4(11), 117103 (2014).CrossRefGoogle Scholar
Zhang, X.J., Wang, G.S., Cao, W.Q., Wei, Y.Z., Liang, J.F., Guo, L., and Cao, M.S.: Enhanced microwave absorption property of reduced graphene oxide (RGO)–MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 6(10), 7471 (2014).CrossRefGoogle ScholarPubMed
Kang, Y., Chu, Z., Zhang, D., Li, G., Jiang, Z., Cheng, H., and Li, X.: Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 61, 200 (2013).CrossRefGoogle Scholar
Bhattacharya, P., Dhibar, S., Hatui, G., Mandal, A., Das, T., and Das, C.K.: Graphene decorated with hexagonal shaped m-type ferrite and polyaniline wrapper: A potential candidate for electromagnetic wave absorbing and energy storage device applications. RSC Adv. 4(33), 17039 (2014).CrossRefGoogle Scholar
Wang, Y., Huang, Y., Wang, Q., and Zong, M.: Preparation and electromagnetic properties of graphene-supported Ni0.8Zn0.2Ce0.06Fe1.94O4 nanocomposite. Powder Technol. 249, 304 (2013).CrossRefGoogle Scholar
Wang, L., Huang, Y., and Huang, H.: N-doped graphene@polyaniline nanorod arrays hierarchical structures: Synthesis and enhanced electromagnetic absorption properties. Mater. Lett. 124, 89 (2014).CrossRefGoogle Scholar
Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S.: Graphene-based composite materials. Nature 442(7100), 282 (2006).CrossRefGoogle ScholarPubMed
Zhang, H-B., Yan, Q., Zheng, W-G., He, Z., and Yu, Z-Z.: Tough graphene–polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3(3), 918 (2011).CrossRefGoogle ScholarPubMed
Singh, K., Ohlan, A., Pham, V.H., Balasubramaniyan, R., Varshney, S., Jang, J., Hur, S.H., Choi, W.M., Kumar, M., and Dhawan, S.: Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5(6), 2411 (2013).CrossRefGoogle ScholarPubMed
Yan, L., Wang, J., Han, X., Ren, Y., Liu, Q., and Li, F.: Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell. Nanotechnology 21(9), 095708 (2010).CrossRefGoogle ScholarPubMed
Gambardella, P., Rusponi, S., Veronese, M., Dhesi, S., Grazioli, C., Dallmeyer, A., Cabria, I., Zeller, R., Dederichs, P., and Kern, K.: Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300(5622), 1130 (2003).CrossRefGoogle ScholarPubMed
Chen, T., Deng, F., Zhu, J., Chen, C., Sun, G., Ma, S., and Yang, X.: Hexagonal and cubic Ni nanocrystals grown on graphene: Phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 22(30), 15190 (2012).CrossRefGoogle Scholar
Giovannetti, G., Khomyakov, P., Brocks, G., Karpan, V.v., Van den Brink, J., and Kelly, P.: Doping graphene with metal contacts. Phys. Rev. Lett. 101(2), 026803 (2008).CrossRefGoogle ScholarPubMed
Dedkov, Y.S. and Fonin, M.: Electronic and magnetic properties of the graphene–ferromagnet interface. New J. Phys. 12(12), 125004 (2010).CrossRefGoogle Scholar
Gong, C., Lee, G., Shan, B., Vogel, E.M., Wallace, R.M., and Cho, K.: First-principles study of metal–graphene interfaces. J. Appl. Phys. 108(12), 123711 (2010).CrossRefGoogle Scholar
Lee, E.J., Balasubramanian, K., Weitz, R.T., Burghard, M., and Kern, K.: Contact and edge effects in graphene devices. Nat. Nanotechnol. 3(8), 486 (2008).CrossRefGoogle ScholarPubMed
Pan, G., Zhu, J., Ma, S., Sun, G., and Yang, X.: Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene. ACS Appl. Mater. Interfaces 5(23), 12716 (2013).CrossRefGoogle ScholarPubMed
Li, X., Feng, J., Du, Y., Bai, J., Fan, H., Zhang, H., Peng, Y., and Li, F.: One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3(10), 5535 (2015).CrossRefGoogle Scholar
Ma, E., Li, J., Zhao, N., Liu, E., He, C., and Shi, C.: Preparation of reduced graphene oxide/Fe3O4 nanocomposite and its microwave electromagnetic properties. Mater. Lett. 91, 209 (2013).CrossRefGoogle Scholar
Mishra, M., Singh, A.P., Singh, B., Singh, V., and Dhawan, S.: Conducting ferrofluid: A high-performance microwave shielding material. J. Mater. Chem. A 2(32), 13159 (2014).CrossRefGoogle Scholar
Liu, P., Huang, Y., Wang, L., Zong, M., and Zhang, W.: Hydrothermal synthesis of reduced graphene oxide–Co3O4 composites and the excellent microwave electromagnetic properties. Mater. Lett. 107, 166 (2013).CrossRefGoogle Scholar
Fang, J-J., Li, S-F., Zha, W-K., Cong, H-Y., Chen, J-F., and Chen, Z-Z.: Microwave absorbing properties of nickel-coated graphene. J. Inorg. Mater. 26(5), 467 (2011).CrossRefGoogle Scholar
Wang, G., Gao, Z., Wan, G., Lin, S., Yang, P., and Qin, Y.: High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 7(5), 704 (2014).CrossRefGoogle Scholar
Kong, L., Yin, X., Zhang, Y., Yuan, X., Li, Q., Ye, F., Cheng, L., and Zhang, L.: Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 117(38), 19701 (2013).CrossRefGoogle Scholar
Zhang, H., Tian, X., Wang, C., Luo, H., Hu, J., Shen, Y., and Xie, A.: Facile synthesis of RGO/NiO composites and their excellent electromagnetic wave absorption properties. Appl. Surf. Sci. 314, 228 (2014).CrossRefGoogle Scholar
Zong, M., Huang, Y., Wu, H., Zhao, Y., Wang, Q., and Sun, X.: One-pot hydrothermal synthesis of RGO/CoFe2O4 composite and its excellent microwave absorption properties. Mater. Lett. 114, 52 (2014).CrossRefGoogle Scholar
Peng, C-H., Chen, P.S., and Chang, C-C.: High-temperature microwave bilayer absorber based on lithium aluminum silicate/lithium aluminum silicate-SiC composite. Ceram. Int. 40(1), 47 (2014).CrossRefGoogle Scholar
Song, N-N., Ke, Y-J., Yang, H-T., Zhang, H., Zhang, X-Q., Shen, B-G., and Cheng, Z-H.: Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe11.6Si1.4C0.2H1.7 . Sci. Rep. 3(2291), 1 (2013).CrossRefGoogle Scholar
Zhang, L., Zhang, X., Zhang, G., Zhang, Z., Liu, S., Li, P., Liao, Q., Zhao, Y., and Zhang, Y.: Investigation on the optimization, design and microwave absorption properties of reduced graphene oxide/tetrapod-like ZnO composites. RSC Adv. 5(14), 10197 (2015).CrossRefGoogle Scholar
Zhang, L., Yu, X., Hu, H., Li, Y., Wu, M., Wang, Z., Li, G., Sun, Z., and Chen, C.: Facile synthesis of iron oxides/reduced graphene oxide composites: Application for electromagnetic wave absorption at high temperature. Sci. Rep. 5, 9298 (2015).CrossRefGoogle ScholarPubMed
Li, N., Huang, Y., Du, F., He, X., Lin, X., Gao, H., Ma, Y., Li, F., Chen, Y., and Eklund, P.C.: Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141 (2006).CrossRefGoogle ScholarPubMed
Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., Zhang, C., Gao, H., and Chen, Y.: Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3), 922 (2009).CrossRefGoogle Scholar
Wang, Y. and Jing, X.: Intrinsically conducting polymers for electromagnetic interference shielding. Polym. Adv. Technol. 16(4), 344 (2005).CrossRefGoogle Scholar
Dhawan, S., Singh, N., and Venkatachalam, S.: Shielding behaviour of conducting polymer-coated fabrics in X-band, W-band and radio frequency range. Synth. Met. 129(3), 261 (2002).CrossRefGoogle Scholar
Ting, T-H. and Wu, K-H.: Synthesis, characterization of polyaniline/BaFe12O19 composites with microwave-absorbing properties. J. Magn. Magn. Mater. 322(15), 2160 (2010).CrossRefGoogle Scholar
Joo, J. and Epstein, A.: Electromagnetic radiation shielding by intrinsically conducting polymers. Appl. Phys. Lett. 65(18), 2278 (1994).CrossRefGoogle Scholar
Hsiao, S-T., Ma, C-C.M., Liao, W-H., Wang, Y-S., Li, S-M., Huang, Y-C., Yang, R-B., and Liang, W-F.: Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 6(13), 10667 (2014).CrossRefGoogle ScholarPubMed
Singh, V.K., Shukla, A., Patra, M.K., Saini, L., Jani, R.K., Vadera, S.R., and Kumar, N.: Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50(6), 2202 (2012).CrossRefGoogle Scholar
Wu, K., Ting, T., Wang, G., Yang, C., and Tsai, C.: Synthesis and microwave electromagnetic characteristics of bamboo charcoal/polyaniline composites in 2–40 GHz. Synth. Met. 158(17), 688 (2008).CrossRefGoogle Scholar
Hongxia, J., Qiaoling, L., Yun, Y., Zhiwu, G., and Xiaofeng, Y.: Preparation and microwave absorption properties of core–shell structured barium titanate/polyaniline composite. J. Magn. Magn. Mater. 332, 10 (2013).CrossRefGoogle Scholar
Dhawan, S., Singh, N., and Rodrigues, D.: Electromagnetic shielding behaviour of conducting polyaniline composites. Sci. Technol. Adv Mater. 4(2), 105 (2003).CrossRefGoogle Scholar
Mäkelä, T., Pienimaa, S., Taka, T., Jussila, S., and Isotalo, H.: Thin polyaniline films in EMI shielding. Synth. Met. 85(1), 1335 (1997).CrossRefGoogle Scholar
Lee, C., Song, H., Jang, K., Oh, E., Epstein, A., and Joo, J.: Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synth. Met. 102(1), 1346 (1999).CrossRefGoogle Scholar
Chen, X., Meng, F., Zhou, Z., Tian, X., Shan, L., Zhu, S., Xu, X., Jiang, M., Wang, L., Hui, D., Wang, Y., Lu, J., and Gou, J.: One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6(14), 8140 (2014).CrossRefGoogle ScholarPubMed
Chen, Z., Xu, C., Ma, C., Ren, W., and Cheng, H.M.: Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296 (2013).CrossRefGoogle ScholarPubMed
Song, W-L., Cao, M-S., Lu, M-M., Bi, S., Wang, C-Y., Liu, J., Yuan, J., and Fan, L-Z.: Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67 (2014).CrossRefGoogle Scholar
Ramirez, C., Osendi, M., Miranzo, P., Belmonte, M., Figueiredo, F., Castro-Beltrán, A., and Terrones, M.: Graphene nanoribbon ceramic composites. Carbon 90, 207 (2015).CrossRefGoogle Scholar
Centeno, A., Rocha, V.G., Alonso, B., Fernández, A., Gutierrez-Gonzalez, C.F., Torrecillas, R., and Zurutuza, A.: Graphene for tough and electroconductive alumina ceramics. J. Eur. Ceram. Soc. 33(15), 3201 (2013).CrossRefGoogle Scholar
Ramirez, C., Figueiredo, F.M., Miranzo, P., Poza, P., and Osendi, M.I.: Graphene nanoplatelet/silicon nitride composites with high electrical conductivity. Carbon 50(10), 3607 (2012).CrossRefGoogle Scholar
Hong, S-Y. and Ra, C-H.: Ceramic composition for absorbing electromagnetic wave and a method for manufacturing the same. Google Patents, 1997.Google Scholar
Yin, X., Xue, Y., Zhang, L., and Cheng, L.: Dielectric, electromagnetic absorption and interference shielding properties of porous yttria-stabilized zirconia/silicon carbide composites. Ceram. Int. 38(3), 2421 (2012).CrossRefGoogle Scholar
Li, X., Zhang, L., Yin, X., Feng, L., and Li, Q.: Effect of chemical vapor infiltration of SiC on the mechanical and electromagnetic properties of Si3N4–SiC ceramic. Scr. Mater. 63(6), 657 (2010).CrossRefGoogle Scholar
Zhang, B., Lu, C., and Li, H.: Improving microwave absorption property of ZnO particle by doping graphene. Mater. Lett. 116, 16 (2014).CrossRefGoogle Scholar
Yuchang, Q., Qinlong, W., Fa, L., and Wancheng, Z.: Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. J. Mater. Chem. C 4, 4853 (2016).CrossRefGoogle Scholar
Han, M., Yin, X., Duan, W., Ren, S., Zhang, L., and Cheng, L.: Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 36(11), 2695 (2016).CrossRefGoogle Scholar
Chen, K., Xiang, C., Li, L., Qian, H., Xiao, Q., and Xu, F.: A novel ternary composite: Fabrication, performance and application of expanded graphite/polyaniline/CoFe2O4 ferrite. J. Mater. Chem. 22(13), 6449 (2012).CrossRefGoogle Scholar
Liu, P., Huang, Y., Wang, L., and Zhang, W.: Preparation and excellent microwave absorption property of three component nanocomposites: Polyaniline-reduced graphene oxide-Co3O4 nanoparticles. Synth. Met. 177, 89 (2013).CrossRefGoogle Scholar
Liu, P., Huang, Y., and Zhang, X.: Enhanced electromagnetic absorption properties of reduced graphene oxide–polypyrrole with NiFe2O4 particles prepared with simple hydrothermal method. Mater. Lett. 120, 143 (2014).CrossRefGoogle Scholar
Liu, P.B., Huang, Y., and Sun, X.: Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method. ACS Appl. Mater. Interfaces 5(23), 12355 (2013).CrossRefGoogle ScholarPubMed
Zhang, X-J., Wang, G-S., Wei, Y-Z., Guo, L., and Cao, M-S.: Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene–CuS nanocomposites and polyvinylidene fluoride. J. Mater. Chem. A 1(39), 12115 (2013).CrossRefGoogle Scholar
Liu, P., Huang, Y., and Zhang, X.: Synthesis of graphene@branching-like polypyrrole@CoFe2O4 composites and their excellent electromagnetic wave absorption properties. Mater. Lett. 136, 298 (2014).CrossRefGoogle Scholar
Zong, M., Huang, Y., Wu, H., Zhao, Y., Wang, Q., and Sun, X.: One-pot hydrothermal synthesis of RGO/CoFe2O4 composite and its excellent microwave absorption properties. Mater. Lett. 114, 52 (2014).CrossRefGoogle Scholar
Shen, B., Zhai, W., Tao, M., Ling, J., and Zheng, W.: Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5(21), 11383 (2013).CrossRefGoogle ScholarPubMed
Li, C., Huang, Y., and Chen, J.: Dopamine-assisted one-pot synthesis of graphene@Ni@C composites and their enhanced microwave absorption performance. Mater. Lett. 154, 136 (2015).CrossRefGoogle Scholar
Kong, L., Yin, X., Yuan, X., Zhang, Y., Liu, X., Cheng, L., and Zhang, L.: Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 73, 185 (2014).CrossRefGoogle Scholar
Wang, L., Zhu, J., Yang, H., Wang, F., Qin, Y., Zhao, T., and Zhang, P.: Fabrication of hierarchical graphene@Fe3O4@SiO2@polyaniline quaternary composite and its improved electrochemical performance. J. Alloys Compd. 634, 232 (2015).CrossRefGoogle Scholar
Wang, L., Huang, Y., Li, C., Chen, J., and Sun, X.: Hierarchical composites of polyaniline nanorod arrays covalently-grafted on the surfaces of graphene@ Fe3O4@C with high microwave absorption performance. Compos. Sci. Technol. 108, 1 (2015).CrossRefGoogle Scholar
Bhattacharya, P., Dhibar, S., Kundu, M.K., Hatui, G., and Das, C.K.: Graphene and MWCNT based bi-functional polymer nanocomposites with enhanced microwave absorption and supercapacitor property. Mater. Res. Bull. 66, 200 (2015).CrossRefGoogle Scholar
Lv, H., Guo, Y., Zhao, Y., Zhang, H., Zhang, B., Ji, G., and Xu, Z.J.: Achieving tunable electromagnetic absorber via graphene/carbon sphere composites. Carbon 110, 130 (2016).CrossRefGoogle Scholar
Zhang, Y., Huang, Y., Zhang, T., Chang, H., Xiao, P., Chen, H., Huang, Z., and Chen, Y.: Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049 (2015).CrossRefGoogle ScholarPubMed