Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T01:46:45.587Z Has data issue: false hasContentIssue false

Reaction sintering of alumina-aluminide alloys (3A)

Published online by Cambridge University Press:  31 January 2011

N. Claussen
Affiliation:
Advanced Ceramics Group, Technische Universität Hamburg-Harburg, 21071 Hamburg, Germany
D. E. Garcia
Affiliation:
Advanced Ceramics Group, Technische Universität Hamburg-Harburg, 21071 Hamburg, Germany
R. Janssen
Affiliation:
Advanced Ceramics Group, Technische Universität Hamburg-Harburg, 21071 Hamburg, Germany
Get access

Abstract

A novel pressureless reaction sintering process is presented for the fabrication of Al2O3-aluminide alloys (3A). Compacts of intensively milled metal oxide-aluminum mixtures are heat-treated in vacuum or inert atmosphere such that the exothermic reactions take place in a controlled manner essentially at temperatures below the melting point of Al. Dense, homogeneous microstructures were obtained with a variety of Al2O3-matrix systems with interpenetrating networks of aluminides of Ti, Fe, Nb, Mo, Zr, Ni, etc. By adding modifiers in the form of oxides or metals, volume and phase composition as well as properties can be tailored in a wide range.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Newkirk, M. S., Urquhart, A. W., Zwicker, H. R., and Breval, E., J. Mater. Res. 1, 81 (1986).CrossRefGoogle Scholar
2.Claussen, N. and Urquhart, A. W., Encyclopedia of Mat. and Eng., edited by Cahn, R. W., Supplementary Vol. 2 (Pergamon, Oxford).Google Scholar
3.Breslin, M. C., Ringnalda, J., Marasco, A. L., Daehn, G. S., and Frazer, H. L., Ceram. Eng. Sci. Proc. 15, 104 (1994).CrossRefGoogle Scholar
4.Loehman, R. E., Ewsak, K., and Tomsia, A.P., J. Am. Ceram. Soc. 79 (1), 27 (1996).CrossRefGoogle Scholar
5.Aghajanian, K., Rocazella, M. A., Burke, J.T., and Keck, S. D., J. Mater. Sci. 26, 447 (1991).CrossRefGoogle Scholar
6.Travitzky, N. A. and Claussen, N., J. Eur. Ceram. Soc. 9, 61 (1992).CrossRefGoogle Scholar
7.Claussen, N., Knechtel, M., Prielipp, H., and J. Rödel, cfi/Ber. DKG 71, 301 (1994).Google Scholar
8.Rödel, J., Prielipp, H., Claussen, N., Sternitzke, M., Alexander, K., Becher, P., and Schnabel, J.B., Scripta Metall. Mater. (1995).Google Scholar
9.Petzow, G., Claussen, N., and Exner, H. E., Z. Metallk. 59, 170 (1968).Google Scholar
10.Knechtel, M., Prielipp, H., Müllejans, H., Claussen, N., and Rödel, J., Scripta Metall. Mater. 31, 1085 (1994).CrossRefGoogle Scholar
11.Kaplan, W. D., Müllejans, H., Rühle, M., Rödel, J., and Claussen, N., J. Am. Ceram. Soc. 78, 2841 (1995).CrossRefGoogle Scholar
12.German, R. M. and Iacocca, R. G., in Processing and Fabrication of Advanced Materials for High Temperature Applications–II, edited by Ravi, V. A. and Srivatsan, T. S. (The Minerals, Metals & Materials Society, Warrendale, PA, 1993), p. 93.Google Scholar
13.German, R. M., Adv. Powder Metall. 2, 115 (1990).Google Scholar
14.Bose, A., Rabin, B. H., and German, R. M., Powder Metall. Int. 20 (3), 25 (1988).Google Scholar
15.Oddone, R. R. and German, R.M., Adv. Powder Metall. 3, 475 (1989).Google Scholar
16.Stoloff, N. S. and Alman, D. E., Mater. Sci. Eng. A 144, 51 (1991).CrossRefGoogle Scholar
17.Bose, A., Moore, B., German, R.M., and Stoloff, N. S., JOM 40 (9), 14 (1988).CrossRefGoogle Scholar
18.German, R. M. and Bose, A., Mater. Sci. Eng. A 107, 107 (1989).CrossRefGoogle Scholar
19.Goldschmidt, H., Lieb. Ann. 301, 19 (1898).CrossRefGoogle Scholar
20.Holz, D., Wu, S., Scheppokat, S., and Claussen, N., J. Am. Ceram. Soc. 77, 2509 (1994).CrossRefGoogle Scholar