Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T18:08:15.927Z Has data issue: false hasContentIssue false

Reaction kinetics, sintering characteristics, and ordering behavior of microwave dielectrics: Barium magnesium tantalate

Published online by Cambridge University Press:  31 January 2011

Chung-Hsin Lu
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
Chien-Cheng Tsai
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
Get access

Abstract

The formation process of Ba(Mg1/3Ta2/3)O3 was confirmed to be a direct reaction between constituent compounds without the presence of intermediate compounds. Isothermal analysis of reaction kinetics indicated the controlling reaction to be a three-dimensional diffusion process. Based on the Ginstling–Brounshtein model, the activation energy of the formation process was estimated to be 257 kJ/mol. A new definition of the ordering parameter for Ba(Mg1/3Ta2/3)O3 was deduced to quantitatively evaluate the ordering degree. Raising sintering temperatures resulted in an increase in the ordering degree and bulk density of Ba(Mg1/3Ta2/3)O3. Reducing the barium content in Ba(Mg1/3Ta2/3)O3 substantially resulted in improved densification and enhanced ordering structure. On the other hand, an excess barium content in specimens hindered the progress of sintering, and also induced the disordering structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nomura, S., Toyama, K., and Kaneta, K., Jpn. J. Appl. Phys. 21, L624 (1982).CrossRefGoogle Scholar
2.Kawashima, S., Nishida, M., Ueda, I., and Ouchi, H., J. Am. Ceram. Soc. 66, 421 (1983).CrossRefGoogle Scholar
3.Desu, S. B. and O'Bryan, H.M., J. Am. Ceram. Soc. 68, 546 (1985).CrossRefGoogle Scholar
4.Kim, I. T., Oh, T. S., and Kim, Y. H., J. Mater. Sci. Lett. 12, 182 (1993).CrossRefGoogle Scholar
5.Endo, K., Fujimoto, K., and Murakawa, K., J. Am. Ceram. Soc. 70, C215 (1987).CrossRefGoogle Scholar
6.Yoon, K. H., Jung, B. J., and Kim, E. S., J. Mater. Sci. Lett. 8, 819 (1989).CrossRefGoogle Scholar
7.Matsumoto, H., Tamura, H., and Wakino, K., Jpn. J. Appl. Phys. 30 (9B), 2347 (1991).CrossRefGoogle Scholar
8.Yoon, K. H., Kim, D.P., and Kim, E.S., J. Am. Ceram. Soc. 77, 1062 (1994).CrossRefGoogle Scholar
9.Galasso, F. and Pyle, J., Inorg. Chem. 2, 482 (1963).CrossRefGoogle Scholar
10.Matsumoto, K., Hiuga, T., Takada, K., and Ichimura, H., Proc. 6th IEEE Int. Symp. Appl. Ferroelect. (IEEE, New York, 1986), p. 118.Google Scholar
11.Kim, E. S.and K.H Yoon, Ferroelect. 133, 1187 (1992).Google Scholar
12.Guo, R., Bhalla, A.S., and Cross, L.E., J. Appl. Phys. 75, 4704 (1994).CrossRefGoogle Scholar
13.Kim, E. S. and Yoon, K.H., J. Mater. Sci. 29, 830 (1994).CrossRefGoogle Scholar
14.Lee, C. C. and Tsai, D.S., Ceram. 14, 82 (1995).Google Scholar
15.Warren, B. E., X-ray Diffraction (Dover Publication Inc., New York, 1969), p. 208.Google Scholar
16.Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley Publishing Co., Reading, MA, 1978), pp. 139, 520, and 524.Google Scholar
17.Scherrer, , Göttinger Nachrichten 2, 98 (1918).Google Scholar
18.Warren, B. E., J. Appl. Phys. 12, 375 (1941).CrossRefGoogle Scholar
19.Ginstling, A. M. and Brounshtein, V.I., J. Appl. Chem. USSR 23, 1327 (1950).Google Scholar
20.Endo, K., Tsurumi, M., and Murakawa, K., J. Ceram. Soc. Jpn. 98, 934 (1990).CrossRefGoogle Scholar
21.Kawashima, S., Am. Ceram. Soc. Bull. 72, 121 (1993).Google Scholar